메뉴 건너뛰기




Volumn 22, Issue 7, 2013, Pages 1895-1903

Impact of climate change on the daily water level fluctuation of Lake Sapanca

Author keywords

Artificial neural networks; Evaporation; Lake level; Lake sapanca; Rainfall; Relative humidity; Temperature; Wind speed

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLIMATE CHANGE; CLIMATE EFFECT; EVAPORATION; HYDROLOGICAL MODELING; LAKE LEVEL; RAINFALL; RELATIVE HUMIDITY; WATER LEVEL; WATER RESOURCE; WIND VELOCITY;

EID: 84884652260     PISSN: 10184619     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (30)
  • 1
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by artificial neural networks
    • DOI 10.1061/(ASCE)0733-9437(2003)129:6(454)
    • [I] Trajkovic, S., Todorovic, B., Stankovic, M., (2003), Forecasting Reference Evapotranspiration by Artificial Neural Networks, ASCE J. Irrig. Drain, Eng., 129,6,454-457. (Pubitemid 37519538)
    • (2003) Journal of Irrigation and Drainage Engineering , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 2
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • DOI 10.1002/hyp.1096
    • Sudheer K.P., Gosain A.K., Rangan D.M., Saheb S.M., (2002), Modelling Evaporation Using an Artificial Neural Network Algorithm, Hydrological Processes, 16,3189-3202. (Pubitemid 35307774)
    • (2002) Hydrological Processes , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Mohana, R.D.3    Saheb, S.M.4
  • 3
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modeling
    • Kisi, O., (2006), Generalized regression neural networks for evapotranspiration modeling. Hydro. Sci. J., 51, 6, 1092-1105.
    • (2006) Hydro. Sci. J. , vol.51 , Issue.6 , pp. 1092-1105
    • Kisi, O.1
  • 4
    • 73649091954 scopus 로고    scopus 로고
    • Evapotranspiration estimation using feedforward neural networks
    • Kisi, O., (2006), Evapotranspiration estimation using feedforward neural networks, Nordic Hydro, 36, 1,49-64.
    • (2006) Nordic Hydro , vol.36 , Issue.1 , pp. 49-64
    • Kisi, O.1
  • 5
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, W.C., Wilby. R., (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrological Sciences Journal, 43,1,47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 6
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modeling
    • Solomatine, D.P., Dulal, K.N., (2003), Model trees as an alternative to neural networks in rainfall-runoff modeling. Hydrological Science Journal, 48,3, 399-411.
    • (2003) Hydrological Science Journal , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 8
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • DOI 10.1016/S0022-1694(98)00242-X, PII S002216949800242X
    • Zealand, C. M., Burn, D. H. and Simonovic, S. P., (1999), Short Term Stream Flow Forecasting Using Artificial Neural Networks, Hydro., 214,32-48. (Pubitemid 29087395)
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 9
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • DOI 10.1016/S0022-1694(02)00112-9, PII S0022169402001129
    • Sivakumar, B., Jayawardena, A.W. and Fernando, T.M.K.G., (2002), River Flow Forecasting: Use of Phase Space Reconstruction and Artificial Neural Networks Approaches, Hydro. 265, 225-245. (Pubitemid 35028775)
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 10
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K., (2003), Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydro. Sci. J., 48,3,349-361.
    • (2003) Hydro. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 11
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy!-earning decomposition for the scheduling of hydroelectric power systems
    • [II]
    • [II] Saad, M., Bigras, P., Turgeon, A. and Duquette, R., (1996), Fuzzy !-earning decomposition for the scheduling of hydroelectric power systems, Water Res., 32, 1, 179-186.
    • (1996) Water Res. , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 13
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi, O., (2005), Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydro. Sci. J., 50,4,683-696.
    • (2005) Hydro. Sci. J. , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 14
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu, H.K. and Kisi, O., (2006), Methods to improve the neural network performance in suspended sediment estimation, J. Hydro., 317,221-238.
    • (2006) J. Hydro. , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 15
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of lake van by artificial neural networks
    • Altunkaynak, A., (2007), Forecasting surface water level fluctuations of lake van by artificial neural networks, Water Resources Management, 21,399-408.
    • (2007) Water Resources Management , vol.21 , pp. 399-408
    • Altunkaynak, A.1
  • 16
    • 33845437201 scopus 로고    scopus 로고
    • Reservoir level forecasting using neural networks: Lake Naivasha
    • DOI 10.1016/j.biosystemseng.2006.09.003, PII S1537511006003059
    • Ondimu, S. and Murase, H., (2007), Reservoir Level Forecasting Using Neural Networks: Lake Naivasha. Biosystems Engineering, 96, 1, 135-138. (Pubitemid 44895410)
    • (2007) Biosystems Engineering , vol.96 , Issue.1 , pp. 135-138
    • Ondimu, S.1    Murase, H.2
  • 17
    • 67650333111 scopus 로고    scopus 로고
    • Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey
    • Kisi O, (2009). Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey, Hydro. Process, 23,2081-2092.
    • (2009) Hydro. Process , vol.23 , pp. 2081-2092
    • Kisi, O.1
  • 19
    • 84884603497 scopus 로고    scopus 로고
    • Intergovernmental Panel on Climate Change (IPCC), (1992), The Supplementary Report to the IPCC Scientific Assessment, New York, Cambridge University Pres
    • Intergovernmental Panel on Climate Change (IPCC), (1992), The Supplementary Report to the IPCC Scientific Assessment, New York, Cambridge University Pres.
  • 20
    • 84884642652 scopus 로고
    • Istanbul University, Institute of Social Sciences, Istanbul, Turkey
    • Ceylan, M.A., (1990), Hydrological Study of Lake Sapanca, Istanbul University, Institute of Social Sciences, Istanbul, Turkey.
    • (1990) Hydrological Study of Lake Sapanca
    • Ceylan, M.A.1
  • 22
    • 84884614528 scopus 로고    scopus 로고
    • Sakarya University, Faculty of Engineering, Department of Civil Engineering, Thesis, Sakarya, Turkey
    • Gokce, H., (2005), Modelling of Evaporation in Lake Sapanca, Sakarya University, Faculty of Engineering, Department of Civil Engineering, Thesis, Sakarya, Turkey.
    • (2005) Modelling of Evaporation in Lake Sapanca
    • Gokce, H.1
  • 23
    • 0003413187 scopus 로고    scopus 로고
    • second ed., Prentice-Hall, Upper Saddle River, New Jersey, USA
    • Haykin, S., (1998), Neural Networks-A Comprehensive Foundation (second ed.), 26-32. Prentice-Hall, Upper Saddle River, New Jersey, USA.
    • (1998) Neural Networks-A Comprehensive Foundation , pp. 26-32
    • Haykin, S.1
  • 24
    • 57049168146 scopus 로고    scopus 로고
    • Modelling daily suspended sediment of rivers in Turkey using several data driven techniques
    • Kisi, O., Yuksel, I., and Dogan, E., (2008), Modelling daily suspended sediment of rivers in Turkey using several data driven techniques, Hydrological Sciences Journal, 53, 6, 1270-1285.
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.6 , pp. 1270-1285
    • Kisi, O.1    Yuksel, I.2    Dogan, E.3
  • 25
    • 0028543366 scopus 로고
    • Training feed forward networks with the marquardt algorithm
    • Hagan, M.T. and Menhaj, M.B., (1994), Training feed forward networks with the marquardt algorithm, IEEE Trans, Neural Networks, 6, 861-867.
    • (1994) IEEE Trans, Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 26
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenco, G., (1989), Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 27
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • Hornik, K., Stinchcombe, M. and White, H. (1989), Multilayer Feed Forward Networks are Universal Approximators, Neural Networks 2,359-366. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 28
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • Freiwan, M and Cigizoglu, H.K., (2005), Prediction of total monthly rainfall in Jordan using feed forward backpropagation method, Fresenius Environmental Bulletin, 14, 142-151.
    • (2005) Fresenius Environmental Bulletin , vol.14 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 29
    • 33744455457 scopus 로고    scopus 로고
    • Development of an artificial neural network to predict benzene concentrations in a street canyon
    • Karakitsios, S.P., Hadjidakis, J., Kassomenos, P.A. and Pilidis, G.A., (2006), Development of an Artificial Neural Network to Predict Benzene Concentrations in A Street Canyon, Fresenius Environmental Bulletin, 15,424-430. (Pubitemid 43799157)
    • (2006) Fresenius Environmental Bulletin , vol.15 , Issue.5 , pp. 424-430
    • Karakitsios, S.P.1    Hadjidakis, I.2    Kassomenos, P.A.3    Pilidis, G.A.4
  • 30
    • 38049027371 scopus 로고    scopus 로고
    • Performance of neural network models with kaiman learning rule for flow routing in a river system
    • Diamantopoulou, M.J., Georgiou, P.E. and Papamichail, D.M., (2007) Performance of neural network models with kaiman learning rule for flow routing in a river system, Fresenius Environmental Bulletin, 16, 1474-1484.
    • (2007) Fresenius Environmental Bulletin , vol.16 , pp. 1474-1484
    • Diamantopoulou, M.J.1    Georgiou, P.E.2    Papamichail, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.