메뉴 건너뛰기




Volumn 12, Issue , 2013, Pages 193-201

Monitoring of technical variation in quantitative high-throughput datasets

Author keywords

Batch effect; Bias; Data adjustment; High throughput analysis; RNAseq; Sample annotation

Indexed keywords

MICRORNA;

EID: 84884558982     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S12862     Document Type: Article
Times cited : (60)

References (26)
  • 1
    • 84886752897 scopus 로고    scopus 로고
    • Batch effect removal methods for microarray gene expression data integration: A survey
    • Lazar C, Meganck S, Taminau J, et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief Bioinformatics. 2013;14(4):469-90.
    • (2013) Brief Bioinformatics. , vol.14 , Issue.4 , pp. 469-490
    • Lazar, C.1    Meganck, S.2    Taminau, J.3
  • 2
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010; 11(10):733-9.
    • (2010) Nat Rev Genet. , vol.11 , Issue.10 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3
  • 3
    • 77949533111 scopus 로고    scopus 로고
    • An epigenetic signature in peripheral blood predicts active ovarian cancer
    • Teschendorff AE, Menon U, Gentry-Maharaj A, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE. 2009;4(12):e8274.
    • (2009) PLoS ONE. , vol.4 , Issue.12
    • Teschendorff, A.E.1    Menon, U.2    Gentry-Maharaj, A.3
  • 5
    • 84871425335 scopus 로고    scopus 로고
    • Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages
    • Taminau J, Meganck S, Lazar C, et al. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics. 2012;13:335.
    • (2012) BMC Bioinformatics. , vol.13 , pp. 335
    • Taminau, J.1    Meganck, S.2    Lazar, C.3
  • 6
    • 77957158584 scopus 로고    scopus 로고
    • LTR: Linear Cross-Platform Integration of Microarray Data
    • Boutros PC. LTR: Linear Cross-Platform Integration of Microarray Data. Cancer Inform. 2010;9:197-208.
    • (2010) Cancer Inform. , vol.9 , pp. 197-208
    • Boutros, P.C.1
  • 7
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118-27.
    • (2007) Biostatistics. , vol.8 , Issue.1 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 8
    • 0347090327 scopus 로고    scopus 로고
    • Adjustment of systematic microarray data biases
    • Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20(1):105-14.
    • (2004) Bioinformatics. , vol.20 , Issue.1 , pp. 105-114
    • Benito, M.1    Parker, J.2    Du, Q.3
  • 9
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3(9):1724-35.
    • (2007) PLoS Genet. , vol.3 , Issue.9 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 10
  • 11
    • 79952230540 scopus 로고    scopus 로고
    • Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods
    • Chen C, Grennan K, Badner J, et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS ONE. 2011;6(2):e17238.
    • (2011) PLoS ONE. , vol.6 , Issue.2
    • Chen, C.1    Grennan, K.2    Badner, J.3
  • 12
    • 82755195845 scopus 로고    scopus 로고
    • Empirical comparison of cross-platform normalization methods for gene expression data
    • Rudy J, Valafar F. Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics. 2011;12:467.
    • (2011) BMC Bioinformatics. , vol.12 , pp. 467
    • Rudy, J.1    Valafar, F.2
  • 13
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A. 2000;97(18):10101-6.
    • (2000) Proc Natl Acad Sci U S A. , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 14
    • 84859783155 scopus 로고    scopus 로고
    • R/DWD: Distance-weighted discrimination for classification, visualization and batch adjustment
    • Huang H, Lu X, Liu Y, Haaland P, Marron JS. R/DWD: distance-weighted discrimination for classification, visualization and batch adjustment. Bioinformatics. 2012;28(8):1182-3.
    • (2012) Bioinformatics. , vol.28 , Issue.8 , pp. 1182-1183
    • Huang, H.1    Lu, X.2    Liu, Y.3    Haaland, P.4    Marron, J.S.5
  • 15
    • 0037336570 scopus 로고    scopus 로고
    • Statistical modeling and visualization of molecular profiles in cancer
    • Scharpf R, Garrett ES, Hu J, Parmigiani G. Statistical modeling and visualization of molecular profiles in cancer. BioTechniques. 2003;Suppl:22-9.
    • (2003) BioTechniques , Issue.SUPPL. , pp. 22-29
    • Scharpf, R.1    Garrett, E.S.2    Hu, J.3    Parmigiani, G.4
  • 16
    • 84859098571 scopus 로고    scopus 로고
    • The sva package for removing batch effects and other unwanted variation in high-throughput experiments
    • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882-3.
    • (2012) Bioinformatics. , vol.28 , Issue.6 , pp. 882-883
    • Leek, J.T.1    Johnson, W.E.2    Parker, H.S.3    Jaffe, A.E.4    Storey, J.D.5
  • 17
    • 79957851822 scopus 로고    scopus 로고
    • Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies
    • Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics. 2011;27(11):1496-505.
    • (2011) Bioinformatics. , vol.27 , Issue.11 , pp. 1496-1505
    • Teschendorff, A.E.1    Zhuang, J.2    Widschwendter, M.3
  • 18
    • 84859095468 scopus 로고    scopus 로고
    • Surrogate variable analysis using partial least squares (SVA-PLS) in gene expression studies
    • Chakraborty S, Datta S, Datta S. Surrogate variable analysis using partial least squares (SVA-PLS) in gene expression studies. Bioinformatics. 2012; 28(6):799-806.
    • (2012) Bioinformatics. , vol.28 , Issue.6 , pp. 799-806
    • Chakraborty, S.1    Datta, S.2    Datta, S.3
  • 19
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
    • (2010) Genome Biol. , vol.11 , Issue.10
    • Anders, S.1    Huber, W.2
  • 20
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520-5.
    • (2001) Bioinformatics. , vol.17 , Issue.6 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2    Sherlock, G.3
  • 22
    • 84863922124 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of human colon and rectal cancer
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407): 330-7.
    • (2012) Nature. , vol.487 , Issue.7407 , pp. 330-337
  • 23
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee AC, Langmead B, Leek JT. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics. 2011;12:449.
    • (2011) BMC Bioinformatics. , vol.12 , pp. 449
    • Frazee, A.C.1    Langmead, B.2    Leek, J.T.3
  • 24
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70.
    • (2012) Nature. , vol.490 , Issue.7418 , pp. 61-70
  • 25
    • 84866894408 scopus 로고    scopus 로고
    • Comprehensive genomic characterization of squamous cell lung cancers
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-25.
    • (2012) Nature. , vol.489 , Issue.7417 , pp. 519-525
  • 26
    • 84879890360 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of clear cell renal cell carcinoma
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43-9.
    • (2013) Nature. , vol.499 , Issue.7456 , pp. 43-49


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.