메뉴 건너뛰기




Volumn 67, Issue , 2013, Pages 65-81

Mechanisms of acid resistance in escherichia coli

Author keywords

Amino acid decarboxylase; Amino acid transporter; PH homeostasis; PpGpp; Stringent response

Indexed keywords

AMINO ACID; AMINO ACID DECARBOXYLASE; CHAPERONE; LYSINE DECARBOXYLASE; ORNITHINE DECARBOXYLASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE; SUCCINATE DEHYDROGENASE;

EID: 84884527530     PISSN: 00664227     EISSN: 15453251     Source Type: Book Series    
DOI: 10.1146/annurev-micro-092412-155708     Document Type: Article
Times cited : (256)

References (96)
  • 1
    • 0033788953 scopus 로고    scopus 로고
    • The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site
    • Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, et al. 2000. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7:910-17
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 910-917
    • Abramson, J.1    Riistama, S.2    Larsson, G.3    Jasaitis, A.4    Svensson-Ek, M.5
  • 3
    • 49249126658 scopus 로고    scopus 로고
    • Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli
    • Alexopoulos E, Kanjee U, Snider J, Houry WA, Pai EF. 2008. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli. Acta Crystallogr. F 64:700-6
    • (2008) Acta Crystallogr. , vol.64 , pp. 700-706
    • Alexopoulos, E.1    Kanjee, U.2    Snider, J.3    Houry, W.A.4    Pai, E.F.5
  • 4
    • 66149132248 scopus 로고    scopus 로고
    • Crystal structure of the acid-induced arginine decarboxylase from Escherichia coli: Reversible decamer assembly controls enzyme activity
    • Andrell J, Hicks MG, Palmer T, Carpenter EP, Iwata S, Maher MJ. 2009. Crystal structure of the acid-induced arginine decarboxylase from Escherichia coli: Reversible decamer assembly controls enzyme activity. Biochemistry 48:3915-27
    • (2009) Biochemistry , vol.48 , pp. 3915-3927
    • Andrell, J.1    Hicks, M.G.2    Palmer, T.3    Carpenter, E.P.4    Iwata, S.5    Maher, M.J.6
  • 5
    • 0016764372 scopus 로고
    • Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties, and pyridoxal 5′-phosphate binding site
    • Applebaum D, Sabo DL, Fischer EH, Morris DR. 1975. Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties, and pyridoxal 5′-phosphate binding site. Biochemistry 14:3675-81
    • (1975) Biochemistry , vol.14 , pp. 3675-3681
    • Applebaum, D.1    Sabo, D.L.2    Fischer, E.H.3    Morris, D.R.4
  • 7
    • 0014429449 scopus 로고
    • Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme
    • Blethen SL, Boeker EA, Snell EE. 1968. Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J. Biol. Chem. 243:1671-77
    • (1968) J. Biol. Chem. , vol.243 , pp. 1671-1677
    • Blethen, S.L.1    Boeker, E.A.2    Snell, E.E.3
  • 8
    • 0030826911 scopus 로고    scopus 로고
    • Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance
    • Brown JL, Ross T, McMeekin TA, Nichols PD. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37:163-73
    • (1997) Int. J. Food Microbiol. , vol.37 , pp. 163-173
    • Brown, J.L.1    Ross, T.2    McMeekin, T.A.3    Nichols, P.D.4
  • 9
    • 78650976369 scopus 로고    scopus 로고
    • Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: A review
    • Calhoun LN, Kwon YM. 2011. Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J. Appl. Microbiol. 110:375-86
    • (2011) J. Appl. Microbiol. , vol.110 , pp. 375-386
    • Calhoun, L.N.1    Kwon, Y.M.2
  • 10
    • 0041465717 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase
    • Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grutter MG. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22:4027-37
    • (2003) EMBO J. , vol.22 , pp. 4027-4037
    • Capitani, G.1    De Biase, D.2    Aurizi, C.3    Gut, H.4    Bossa, F.5    Grutter, M.G.6
  • 11
    • 77954313305 scopus 로고    scopus 로고
    • Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE
    • Castanie-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C. 2010. Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res. 38:3546-54
    • (2010) Nucleic Acids Res. , vol.38 , pp. 3546-3554
    • Castanie-Cornet, M.P.1    Cam, K.2    Bastiat, B.3    Cros, A.4    Bordes, P.5    Gutierrez, C.6
  • 12
    • 0035086021 scopus 로고    scopus 로고
    • Escherichia coli acid resistance: CAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes
    • Castanie-Cornet MP, Foster JW. 2001. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709-15
    • (2001) Microbiology , vol.147 , pp. 709-715
    • Castanie-Cornet, M.P.1    Foster, J.W.2
  • 14
    • 0033054689 scopus 로고    scopus 로고
    • Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli
    • Chang YY, Cronan JE Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33:249-59
    • (1999) Mol. Microbiol. , vol.33 , pp. 249-259
    • Chang, Y.Y.1    Cronan Jr., J.E.2
  • 15
    • 0033823598 scopus 로고    scopus 로고
    • Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7
    • Choi SH, Baumler DJ, Kaspar CW. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 66:3911-16
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3911-3916
    • Choi, S.H.1    Baumler, D.J.2    Kaspar, C.W.3
  • 16
    • 0026779245 scopus 로고
    • Crystal structures explain functional properties of two E. coli porins
    • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, et al. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727-33
    • (1992) Nature , vol.358 , pp. 727-733
    • Cowan, S.W.1    Schirmer, T.2    Rummel, G.3    Steiert, M.4    Ghosh, R.5
  • 17
    • 0033037702 scopus 로고    scopus 로고
    • The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system
    • De Biase D, Tramonti A, Bossa F, Visca P. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 32:1198-211
    • (1999) Mol. Microbiol. , vol.32 , pp. 1198-1211
    • De Biase, D.1    Tramonti, A.2    Bossa, F.3    Visca, P.4
  • 19
    • 0028828533 scopus 로고
    • Cadaverine induces closing of E. coli porins
    • delaVega AL, Delcour AH. 1995. Cadaverine induces closing of E. coli porins. EMBO J. 14:6058-65
    • (1995) EMBO J. , vol.14 , pp. 6058-6065
    • Delavega, A.L.1    Delcour, A.H.2
  • 20
    • 24044437199 scopus 로고    scopus 로고
    • Structure of Escherichia coli glutamate decarboxylase (GADα) in complex with glutarate at 2.05 Å resolution
    • Dutyshev DI, Darii EL, Fomenkova NP, Pechik IV, Polyakov KM, et al. 2005. Structure of Escherichia coli glutamate decarboxylase (GADα) in complex with glutarate at 2.05 Å resolution. Acta Crystallogr. D 61:230-35
    • (2005) Acta Crystallogr. D , vol.61 , pp. 230-235
    • Dutyshev, D.I.1    Darii, E.L.2    Fomenkova, N.P.3    Pechik, I.V.4    Polyakov, K.M.5
  • 21
    • 0037122805 scopus 로고    scopus 로고
    • X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity
    • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287-94
    • (2002) Nature , vol.415 , pp. 287-294
    • Dutzler, R.1    Campbell, E.B.2    Cadene, M.3    Chait, B.T.4    Mackinnon, R.5
  • 22
    • 0037418859 scopus 로고    scopus 로고
    • Gating the selectivity filter in ClC chloride channels
    • Dutzler R, Campbell EB, MacKinnon R. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108-12
    • (2003) Science , vol.300 , pp. 108-112
    • Dutzler, R.1    Campbell, E.B.2    Mackinnon, R.3
  • 23
    • 77952979824 scopus 로고    scopus 로고
    • The architecture of respiratory complex i
    • Efremov RG, Baradaran R, Sazanov LA. 2010. The architecture of respiratory complex I. Nature 465:441-45
    • (2010) Nature , vol.465 , pp. 441-445
    • Efremov, R.G.1    Baradaran, R.2    Sazanov, L.A.3
  • 24
    • 79953224088 scopus 로고    scopus 로고
    • Crystal structure of the sensory domain of Escherichia coli CadC, a member of the ToxR-like protein family
    • Eichinger A, Haneburger I, Koller C, Jung K, Skerra A. 2011. Crystal structure of the sensory domain of Escherichia coli CadC, a member of the ToxR-like protein family. Protein Sci. 20:656-69
    • (2011) Protein Sci. , vol.20 , pp. 656-669
    • Eichinger, A.1    Haneburger, I.2    Koller, C.3    Jung, K.4    Skerra, A.5
  • 25
    • 69249220125 scopus 로고    scopus 로고
    • Structure of a prokaryotic virtual proton pump at 3.2 A resolution
    • Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, et al. 2009. Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460:1040-43
    • (2009) Nature , vol.460 , pp. 1040-1043
    • Fang, Y.1    Jayaram, H.2    Shane, T.3    Kolmakova-Partensky, L.4    Wu, F.5
  • 26
    • 33846963817 scopus 로고    scopus 로고
    • A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance
    • Fang Y, Kolmakova-Partensky L, Miller C. 2007. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem. 282:176-82
    • (2007) J. Biol. Chem. , vol.282 , pp. 176-182
    • Fang, Y.1    Kolmakova-Partensky, L.2    Miller, C.3
  • 27
    • 9444285788 scopus 로고    scopus 로고
    • Escherichia coli acid resistance: Tales of an amateur acidophile
    • Foster JW. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2:898-907
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 898-907
    • Foster, J.W.1
  • 28
    • 0034695425 scopus 로고    scopus 로고
    • HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria
    • Gajiwala KS, Burley SK. 2000. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295:605-12
    • (2000) J. Mol. Biol. , vol.295 , pp. 605-612
    • Gajiwala, K.S.1    Burley, S.K.2
  • 29
    • 0011835137 scopus 로고
    • Studies on bacterial amino-acid decarboxylases: 1. l(+)-lysine decarboxylase
    • Gale EF, Epps HM. 1944. Studies on bacterial amino-acid decarboxylases: 1. l(+)-lysine decarboxylase. Biochem. J. 38:232-42
    • (1944) Biochem. J. , vol.38 , pp. 232-242
    • Gale, E.F.1    Epps, H.M.2
  • 30
    • 67649200539 scopus 로고    scopus 로고
    • Structure and mechanism of an amino acid antiporter
    • Gao X, Lu F, Zhou L, Dang S, Sun L, et al. 2009. Structure and mechanism of an amino acid antiporter. Science 324:1565-68
    • (2009) Science , vol.324 , pp. 1565-1568
    • Gao, X.1    Lu, F.2    Zhou, L.3    Dang, S.4    Sun, L.5
  • 31
    • 76749095057 scopus 로고    scopus 로고
    • Mechanism of substrate recognition and transport by an amino acid antiporter
    • Gao X, Zhou L, Jiao X, Lu F, Yan C, et al. 2010. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463:828-32
    • (2010) Nature , vol.463 , pp. 828-832
    • Gao, X.1    Zhou, L.2    Jiao, X.3    Lu, F.4    Yan, C.5
  • 32
    • 8544280704 scopus 로고    scopus 로고
    • The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli
    • Gong S, Ma Z, Foster JW. 2004. The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol. Microbiol. 54:948-61
    • (2004) Mol. Microbiol. , vol.54 , pp. 948-961
    • Gong, S.1    Ma, Z.2    Foster, J.W.3
  • 33
    • 0027390911 scopus 로고
    • Acid resistance in enteric bacteria
    • Gorden J, Small PL. 1993. Acid resistance in enteric bacteria. Infect. Immun. 61:364-67
    • (1993) Infect. Immun. , vol.61 , pp. 364-367
    • Gorden, J.1    Small, P.L.2
  • 35
    • 0029046782 scopus 로고
    • Modeling of the spatial structure of eukaryotic ornithine decarboxylases
    • Grishin NV, Phillips MA, Goldsmith EJ. 1995. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 4:1291-304
    • (1995) Protein Sci. , vol.4 , pp. 1291-1304
    • Grishin, N.V.1    Phillips, M.A.2    Goldsmith, E.J.3
  • 36
    • 0029886938 scopus 로고    scopus 로고
    • The survival benefit of short-chain organic acids and the inducible arginine and lysine decarboxylase genes for Escherichia coli
    • Guilfoyle DE, Hirshfield IN. 1996. The survival benefit of short-chain organic acids and the inducible arginine and lysine decarboxylase genes for Escherichia coli. Lett. Appl. Microbiol. 22:393-96
    • (1996) Lett. Appl. Microbiol. , vol.22 , pp. 393-396
    • Guilfoyle, D.E.1    Hirshfield, I.N.2
  • 37
    • 33745752814 scopus 로고    scopus 로고
    • Escherichia coli acid resistance: PH-sensing, activation by chloride and autoinhibition in GadB
    • Gut H, Pennacchietti E, John RA, Bossa F, Capitani G, et al. 2006. Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB. EMBO J. 25:2643-51
    • (2006) EMBO J. , vol.25 , pp. 2643-2651
    • Gut, H.1    Pennacchietti, E.2    John, R.A.3    Bossa, F.4    Capitani, G.5
  • 38
    • 33750500341 scopus 로고    scopus 로고
    • Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12
    • Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, et al. 2006. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 6:89
    • (2006) BMC Microbiol. , vol.6 , pp. 89
    • Hayes, E.T.1    Wilks, J.C.2    Sanfilippo, P.3    Yohannes, E.4    Tate, D.P.5
  • 39
    • 73849131808 scopus 로고    scopus 로고
    • Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: Analysis of a bar-codedmutant collection
    • Hobbs EC, Astarita JL, Storz G. 2010. Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-codedmutant collection. J. Bacteriol. 192:59-67
    • (2010) J. Bacteriol. , vol.192 , pp. 59-67
    • Hobbs, E.C.1    Astarita, J.L.2    Storz, G.3
  • 40
    • 0034856940 scopus 로고    scopus 로고
    • Chaperone-assisted protein folding in the cell cytoplasm
    • Houry WA. 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein Pept. Sci. 2:227-44
    • (2001) Curr. Protein Pept. Sci. , vol.2 , pp. 227-244
    • Houry, W.A.1
  • 41
    • 0037126294 scopus 로고    scopus 로고
    • A biological role for prokaryotic ClC chloride channels
    • Iyer R, Iverson TM, Accardi A, Miller C. 2002. A biological role for prokaryotic ClC chloride channels. Nature 419:715-18
    • (2002) Nature , vol.419 , pp. 715-718
    • Iyer, R.1    Iverson, T.M.2    Accardi, A.3    Miller, C.4
  • 42
    • 0033886562 scopus 로고    scopus 로고
    • The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations
    • Jack DL, Paulsen IT, Saier MH. 2000. The amino acid/polyamine/ organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146(Pt. 8):1797-814
    • (2000) Microbiology , vol.146 , Issue.PART 8 , pp. 1797-1814
    • Jack, D.L.1    Paulsen, I.T.2    Saier, M.H.3
  • 43
    • 0242538842 scopus 로고    scopus 로고
    • Crystal structure of diaminopelargonic acid synthase: Evolutionary relationships between pyridoxal-5′-phosphate-dependent enzymes
    • Käck H, Sandmark J, Gibson K, Schneider G, Lindqvist Y. 1999. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5′-phosphate-dependent enzymes. J. Mol. Biol. 291:857-76
    • (1999) J. Mol. Biol. , vol.291 , pp. 857-876
    • Kck, H.1    Sandmark, J.2    Gibson, K.3    Schneider, G.4    Lindqvist, Y.5
  • 44
    • 79952280501 scopus 로고    scopus 로고
    • Linking the bacterial acid stress and stringent responses: The structure of the inducible lysine decarboxylase
    • Kanjee U, Gutsche I, Alexopoulos E, Zhao B, Thibault G, et al. 2011. Linking the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J. 30:931-44
    • (2011) EMBO J. , vol.30 , pp. 931-944
    • Kanjee, U.1    Gutsche, I.2    Alexopoulos, E.3    Zhao, B.4    Thibault, G.5
  • 45
    • 80055008762 scopus 로고    scopus 로고
    • The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition
    • Kanjee U, Gutsche I, Ramachandran S, Houry W. 2011. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 50:9388-98
    • (2011) Biochemistry , vol.50 , pp. 9388-9398
    • Kanjee, U.1    Gutsche, I.2    Ramachandran, S.3    Houry, W.4
  • 46
    • 84866038398 scopus 로고    scopus 로고
    • Direct binding targets of the stringent response alarmone (p)ppGpp
    • Kanjee U, Ogata K, Houry WA. 2012. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol. Microbiol. 85:1029-43
    • (2012) Mol. Microbiol. , vol.85 , pp. 1029-1043
    • Kanjee, U.1    Ogata, K.2    Houry, W.A.3
  • 47
    • 0025720216 scopus 로고
    • Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome
    • Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K. 1991. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J. Biol. Chem. 266:20922-27
    • (1991) J. Biol. Chem. , vol.266 , pp. 20922-20927
    • Kashiwagi, K.1    Suzuki, T.2    Suzuki, F.3    Furuchi, T.4    Kobayashi, H.5    Igarashi, K.6
  • 50
    • 79954784829 scopus 로고    scopus 로고
    • Molecular aspects of bacterial pH sensing and homeostasis
    • Krulwich TA, Sachs G, Padan E. 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9:330-43
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 330-343
    • Krulwich, T.A.1    Sachs, G.2    Padan, E.3
  • 51
    • 0014149017 scopus 로고
    • Studies on amino acid decarboxylases in Escherichia coli
    • Lawson A, Quinn AG. 1967. Studies on amino acid decarboxylases in Escherichia coli. Biochem. J. 105:483-90
    • (1967) Biochem. J. , vol.105 , pp. 483-490
    • Lawson, A.1    Quinn, A.G.2
  • 52
    • 34548598563 scopus 로고    scopus 로고
    • Structure and function of the Escherichia coli protein YmgB: A protein critical for biofilm formation and acid resistance
    • Lee J, Page R, Garcia-Contreras R, Palermino JM, Zhang XS, et al. 2007. Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid resistance. J. Mol. Biol. 373:11-26
    • (2007) J. Mol. Biol. , vol.373 , pp. 11-26
    • Lee, J.1    Page, R.2    Garcia-Contreras, R.3    Palermino, J.M.4    Zhang, X.S.5
  • 53
    • 0029073161 scopus 로고
    • Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli
    • Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 177:4097-104
    • (1995) J. Bacteriol. , vol.177 , pp. 4097-4104
    • Lin, J.1    Lee, I.S.2    Frey, J.3    Slonczewski, J.L.4    Foster, J.W.5
  • 55
    • 84862819559 scopus 로고    scopus 로고
    • Structure and mechanism of a glutamate-GABA antiporter
    • Ma D, Lu P, Yan C, Fan C, Yin P, et al. 2012. Structure and mechanism of a glutamate-GABA antiporter. Nature 483:632-36
    • (2012) Nature , vol.483 , pp. 632-636
    • Ma, D.1    Lu, P.2    Yan, C.3    Fan, C.4    Yin, P.5
  • 56
    • 11844269324 scopus 로고    scopus 로고
    • The periplasmic α-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation
    • Marcus EA, Moshfegh AP, Sachs G, Scott DR. 2005. The periplasmic α-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J. Bacteriol. 187:729-38
    • (2005) J. Bacteriol. , vol.187 , pp. 729-738
    • Marcus, E.A.1    Moshfegh, A.P.2    Sachs, G.3    Scott, D.R.4
  • 57
    • 34147172119 scopus 로고    scopus 로고
    • Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance
    • Mates AK, Sayed AK, Foster JW. 2007. Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J. Bacteriol. 189:2759-68
    • (2007) J. Bacteriol. , vol.189 , pp. 2759-2768
    • Mates, A.K.1    Sayed, A.K.2    Foster, J.W.3
  • 58
    • 11144263144 scopus 로고    scopus 로고
    • PH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12
    • Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. 2005. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187:304-19
    • (2005) J. Bacteriol. , vol.187 , pp. 304-319
    • Maurer, L.M.1    Yohannes, E.2    Bondurant, S.S.3    Radmacher, M.4    Slonczewski, J.L.5
  • 59
    • 0000452053 scopus 로고
    • Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli
    • Melnykovych G, Snell EE. 1958. Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J. Bacteriol. 76:518-23
    • (1958) J. Bacteriol. , vol.76 , pp. 518-523
    • Melnykovych, G.1    Snell, E.E.2
  • 60
    • 33947136225 scopus 로고    scopus 로고
    • The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids
    • Moreau PL. 2007. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J. Bacteriol. 189:2249-61
    • (2007) J. Bacteriol. , vol.189 , pp. 2249-2261
    • Moreau, P.L.1
  • 61
    • 33846896142 scopus 로고    scopus 로고
    • Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli
    • Mujacic M, Baneyx F. 2007. Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli. Appl. Environ. Microbiol. 73:1014-18
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 1014-1018
    • Mujacic, M.1    Baneyx, F.2
  • 63
    • 0019520373 scopus 로고
    • The inducible arginine decarboxylase of Escherichia coli B: Activity of the dimer and the decamer
    • Nowak S, Boeker EA. 1981. The inducible arginine decarboxylase of Escherichia coli B: activity of the dimer and the decamer. Arch. Biochem. Biophys. 207:110-16
    • (1981) Arch. Biochem. Biophys. , vol.207 , pp. 110-116
    • Nowak, S.1    Boeker, E.A.2
  • 64
    • 0024512672 scopus 로고
    • The human gastric bactericidal barrier: Mechanisms of action, relative antibacterial activity, and dietary influences
    • Peterson WL, Mackowiak PA, Barnett CC, Marling-Cason M, Haley ML. 1989. The human gastric bactericidal barrier: mechanisms of action, relative antibacterial activity, and dietary influences. J. Infect. Dis. 159:979-83
    • (1989) J. Infect. Dis. , vol.159 , pp. 979-983
    • Peterson, W.L.1    Mackowiak, P.A.2    Barnett, C.C.3    Marling-Cason, M.4    Haley, M.L.5
  • 65
    • 0347994107 scopus 로고    scopus 로고
    • A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function
    • Quigley PM, Korotkov K, Baneyx F, Hol WG. 2004. A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Sci. 13:269-77
    • (2004) Protein Sci. , vol.13 , pp. 269-277
    • Quigley, P.M.1    Korotkov, K.2    Baneyx, F.3    Hol, W.G.4
  • 66
    • 4444226939 scopus 로고    scopus 로고
    • Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential
    • Richard H, Foster JW. 2004. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186:6032-41
    • (2004) J. Bacteriol. , vol.186 , pp. 6032-6041
    • Richard, H.1    Foster, J.W.2
  • 67
    • 34948835217 scopus 로고    scopus 로고
    • Sodium regulates Escherichia coli acid resistance, and influences GadX- and GadW-dependent activation of gadE
    • Richard H, Foster JW. 2007. Sodium regulates Escherichia coli acid resistance, and influences GadX- and GadW-dependent activation of gadE. Microbiology 153:3154-61
    • (2007) Microbiology , vol.153 , pp. 3154-3161
    • Richard, H.1    Foster, J.W.2
  • 68
    • 0026594089 scopus 로고
    • The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli
    • Rowbury RJ, Goodson M, Wallace AD. 1992. The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. J. Appl. Bacteriol. 72:233-43
    • (1992) J. Appl. Bacteriol. , vol.72 , pp. 233-243
    • Rowbury, R.J.1    Goodson, M.2    Wallace, A.D.3
  • 69
    • 38949193280 scopus 로고    scopus 로고
    • Role of the multidrug resistance regulator MarA in global regulation of the hdeAB acid resistance operon in Escherichia coli
    • Ruiz C, McMurry LM, Levy SB. 2008. Role of the multidrug resistance regulator MarA in global regulation of the hdeAB acid resistance operon in Escherichia coli. J. Bacteriol. 190:1290-97
    • (2008) J. Bacteriol. , vol.190 , pp. 1290-1297
    • Ruiz, C.1    McMurry, L.M.2    Levy, S.B.3
  • 70
    • 0015957627 scopus 로고
    • Purification and physical properties of inducible Escherichia coli lysine decarboxylase
    • Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH. 1974. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry 13:662-70
    • (1974) Biochemistry , vol.13 , pp. 662-670
    • Sabo, D.L.1    Boeker, E.A.2    Byers, B.3    Waron, H.4    Fischer, E.H.5
  • 72
    • 0026725149 scopus 로고
    • Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli
    • Sauter M, Bohm R, Bock A. 1992. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol. Microbiol. 6:1523-32
    • (1992) Mol. Microbiol. , vol.6 , pp. 1523-1532
    • Sauter, M.1    Bohm, R.2    Bock, A.3
  • 73
    • 33847687662 scopus 로고    scopus 로고
    • Respiratory complex I: Mechanistic and structural insights provided by the crystal structure of the hydrophilic domain
    • Sazanov LA. 2007. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275-88
    • (2007) Biochemistry , vol.46 , pp. 2275-2288
    • Sazanov, L.A.1
  • 74
    • 9644291930 scopus 로고    scopus 로고
    • Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling
    • Schmid R, Gerloff DL. 2004. Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. FEBS Lett. 578:163-68
    • (2004) FEBS Lett. , vol.578 , pp. 163-168
    • Schmid, R.1    Gerloff, D.L.2
  • 75
  • 76
    • 72849170954 scopus 로고
    • Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme
    • Shukuya R, Schwert GW. 1960. Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme. J. Biol. Chem. 235:1649-52
    • (1960) J. Biol. Chem. , vol.235 , pp. 1649-1652
    • Shukuya, R.1    Schwert, G.W.2
  • 78
    • 1542721578 scopus 로고    scopus 로고
    • Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli
    • Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51:1401-12
    • (2004) Mol. Microbiol. , vol.51 , pp. 1401-1412
    • Soksawatmaekhin, W.1    Kuraishi, A.2    Sakata, K.3    Kashiwagi, K.4    Igarashi, K.5
  • 79
    • 33749376764 scopus 로고    scopus 로고
    • Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB
    • Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K. 2006. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem. 281:29213-20
    • (2006) J. Biol. Chem. , vol.281 , pp. 29213-29220
    • Soksawatmaekhin, W.1    Uemura, T.2    Fukiwake, N.3    Kashiwagi, K.4    Igarashi, K.5
  • 81
    • 79953901438 scopus 로고    scopus 로고
    • Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli
    • Tetsch L, Koller C, Donhofer A, Jung K. 2011. Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli. BMC Microbiol. 11:74
    • (2011) BMC Microbiol. , vol.11 , pp. 74
    • Tetsch, L.1    Koller, C.2    Donhofer, A.3    Jung, K.4
  • 82
    • 37749014565 scopus 로고    scopus 로고
    • The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP
    • Tetsch L, Koller C, Haneburger I, Jung K. 2007. The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol. Microbiol. 67:570-83
    • (2007) Mol. Microbiol. , vol.67 , pp. 570-583
    • Tetsch, L.1    Koller, C.2    Haneburger, I.3    Jung, K.4
  • 84
    • 84861656595 scopus 로고    scopus 로고
    • Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli
    • Tomitori H, Kashiwagi K, Igarashi K. 2012. Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Amino Acids 42:733-40
    • (2012) Amino Acids , vol.42 , pp. 733-740
    • Tomitori, H.1    Kashiwagi, K.2    Igarashi, K.3
  • 85
    • 54249135920 scopus 로고    scopus 로고
    • GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: Transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites
    • Tramonti A, De Canio M, De Biase D. 2008. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol. Microbiol. 70:965-82
    • (2008) Mol. Microbiol. , vol.70 , pp. 965-982
    • Tramonti, A.1    De Canio, M.2    De Biase, D.3
  • 86
    • 0036237890 scopus 로고    scopus 로고
    • Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system
    • Tramonti A, Visca P, De Canio M, Falconi M, De Biase D. 2002. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J. Bacteriol. 184:2603-13
    • (2002) J. Bacteriol. , vol.184 , pp. 2603-2613
    • Tramonti, A.1    Visca, P.2    De Canio, M.3    Falconi, M.4    De Biase, D.5
  • 87
    • 84863405467 scopus 로고    scopus 로고
    • Sided functions of an arginine-agmatine antiporter oriented in liposomes
    • Tsai MF, Fang Y, Miller C. 2012. Sided functions of an arginine-agmatine antiporter oriented in liposomes. Biochemistry 51:1577-85
    • (2012) Biochemistry , vol.51 , pp. 1577-1585
    • Tsai, M.F.1    Fang, Y.2    Miller, C.3
  • 88
    • 0036889029 scopus 로고    scopus 로고
    • Gene expression profiling of the pH response in Escherichia coli
    • Tucker DL, Tucker N, Conway T. 2002. Gene expression profiling of the pH response in Escherichia coli. J. Bacteriol. 184:6551-58
    • (2002) J. Bacteriol. , vol.184 , pp. 6551-6558
    • Tucker, D.L.1    Tucker, N.2    Conway, T.3
  • 89
    • 0029839533 scopus 로고    scopus 로고
    • Identification of σs-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri
    • Waterman SR, Small PL. 1996. Identification of σS-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol. Microbiol. 21:925-40
    • (1996) Mol. Microbiol. , vol.21 , pp. 925-940
    • Waterman, S.R.1    Small, P.L.2
  • 90
    • 0026542813 scopus 로고
    • Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH
    • Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER. 1992. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J. Bacteriol. 174:530-40
    • (1992) J. Bacteriol. , vol.174 , pp. 530-540
    • Watson, N.1    Dunyak, D.S.2    Rosey, E.L.3    Slonczewski, J.L.4    Olson, E.R.5
  • 91
    • 34547634728 scopus 로고    scopus 로고
    • PH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry
    • Wilks JC, Slonczewski JL. 2007. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 189:5601-7
    • (2007) J. Bacteriol. , vol.189 , pp. 5601-5607
    • Wilks, J.C.1    Slonczewski, J.L.2
  • 92
    • 0348150715 scopus 로고    scopus 로고
    • Architecture of succinate dehydrogenase and reactive oxygen species generation
    • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, et al. 2003. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700-4
    • (2003) Science , vol.299 , pp. 700-704
    • Yankovskaya, V.1    Horsefield, R.2    Tornroth, S.3    Luna-Chavez, C.4    Miyoshi, H.5
  • 93
    • 2942620072 scopus 로고    scopus 로고
    • Adaptation of Escherichia coli O157:H7 topHaltersmembrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid
    • YukHG, Marshall DL. 2004. Adaptation of Escherichia coli O157:H7 topHaltersmembrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl. Environ.Microbiol. 70:3500-5
    • (2004) Appl. Environ.Microbiol. , vol.70 , pp. 3500-3505
    • Yuk, H.G.1    Marshall, D.L.2
  • 94
    • 77950604350 scopus 로고    scopus 로고
    • Acid stress response in enteropathogenic gammaproteobacteria: An aptitude for survival
    • Zhao B, Houry WA. 2010. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem. Cell Biol. 88:301-14
    • (2010) Biochem. Cell Biol. , vol.88 , pp. 301-314
    • Zhao, B.1    Houry, W.A.2
  • 95
    • 0037008743 scopus 로고    scopus 로고
    • Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli
    • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, et al. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem. 277:27689-96
    • (2002) J. Biol. Chem. , vol.277 , pp. 27689-27696
    • Zhao, G.1    Ceci, P.2    Ilari, A.3    Giangiacomo, L.4    Laue, T.M.5
  • 96
    • 79957625386 scopus 로고    scopus 로고
    • Protonation of glutamate-208 induces the release of agmatine in an outwardfacing conformation of arginine/agmatine antiporter
    • Zomot E, Bahar I. 2011. Protonation of glutamate-208 induces the release of agmatine in an outwardfacing conformation of arginine/agmatine antiporter. J. Biol. Chem. 286:19693-701
    • (2011) J. Biol. Chem. , vol.286 , pp. 19693-19701
    • Zomot, E.1    Bahar, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.