메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 476-483

Beyond symmetry-breaking: Competition and negative feedback in GTPase regulation

Author keywords

Cdc42; GAP; GEF; Rac; Rop

Indexed keywords

GUANOSINE TRIPHOSPHATASE;

EID: 84884417598     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.05.003     Document Type: Review
Times cited : (78)

References (50)
  • 1
    • 81955160696 scopus 로고    scopus 로고
    • Symmetry breaking and the establishment of cell polarity in budding yeast
    • Johnson J.M., et al. Symmetry breaking and the establishment of cell polarity in budding yeast. Curr. Opin. Genet. Dev. 2011, 21:740-746.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 740-746
    • Johnson, J.M.1
  • 2
    • 84870539740 scopus 로고    scopus 로고
    • Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking
    • Yang Z., Lavagi I. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. Curr. Opin. Plant Biol. 2012, 15:601-607.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 601-607
    • Yang, Z.1    Lavagi, I.2
  • 3
    • 14844304308 scopus 로고    scopus 로고
    • Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis
    • Fu Y., et al. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 2005, 120:687-700.
    • (2005) Cell , vol.120 , pp. 687-700
    • Fu, Y.1
  • 4
    • 84863059653 scopus 로고    scopus 로고
    • Yeast formin Bni1p has multiple localization regions that function in polarized growth and spindle orientation
    • Liu W., et al. Yeast formin Bni1p has multiple localization regions that function in polarized growth and spindle orientation. Mol. Biol. Cell 2012, 23:412-422.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 412-422
    • Liu, W.1
  • 5
    • 84867178299 scopus 로고    scopus 로고
    • Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p
    • Chen H., et al. Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p. Mol. Biol. Cell 2012, 23:3814-3826.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 3814-3826
    • Chen, H.1
  • 6
    • 76049118573 scopus 로고    scopus 로고
    • The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis
    • Wu H., et al. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 2010, 21:430-442.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 430-442
    • Wu, H.1
  • 7
    • 77951227637 scopus 로고    scopus 로고
    • Structure-function study of the N-terminal domain of exocyst subunit Sec3
    • Baek K., et al. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J. Biol. Chem. 2010, 285:10424-10433.
    • (2010) J. Biol. Chem. , vol.285 , pp. 10424-10433
    • Baek, K.1
  • 9
    • 0015454185 scopus 로고
    • A theory of biological pattern formation
    • Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik 1972, 12:30-39.
    • (1972) Kybernetik , vol.12 , pp. 30-39
    • Gierer, A.1    Meinhardt, H.2
  • 10
    • 56349125826 scopus 로고    scopus 로고
    • Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex
    • Kozubowski L., et al. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 2008, 18:1719-1726.
    • (2008) Curr. Biol. , vol.18 , pp. 1719-1726
    • Kozubowski, L.1
  • 11
    • 0037428460 scopus 로고    scopus 로고
    • The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2
    • Endo M., et al. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. J. Biol. Chem. 2003, 278:843-852.
    • (2003) J. Biol. Chem. , vol.278 , pp. 843-852
    • Endo, M.1
  • 12
    • 0037085375 scopus 로고    scopus 로고
    • Regulation of the Cool/Pix proteins: key binding partners of the Cdc42/Rac targets, the p21-activated kinases
    • Feng Q., et al. Regulation of the Cool/Pix proteins: key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J. Biol. Chem. 2002, 277:5644-5650.
    • (2002) J. Biol. Chem. , vol.277 , pp. 5644-5650
    • Feng, Q.1
  • 13
    • 0036273905 scopus 로고    scopus 로고
    • Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors
    • Papadaki P., et al. Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors. Mol. Cell. Biol. 2002, 22:4598-4606.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 4598-4606
    • Papadaki, P.1
  • 14
    • 0033868140 scopus 로고    scopus 로고
    • Pattern formation by local self-activation and lateral inhibition
    • Meinhardt H., Gierer A. Pattern formation by local self-activation and lateral inhibition. Bioessays 2000, 22:753-760.
    • (2000) Bioessays , vol.22 , pp. 753-760
    • Meinhardt, H.1    Gierer, A.2
  • 15
    • 0016209638 scopus 로고
    • Applications of a theory of biological pattern formation based on lateral inhibition
    • Meinhardt H., Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 1974, 15:321-346.
    • (1974) J. Cell Sci. , vol.15 , pp. 321-346
    • Meinhardt, H.1    Gierer, A.2
  • 16
    • 42049115235 scopus 로고    scopus 로고
    • Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity
    • Goryachev A.B., Pokhilko A.V. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 2008, 582:1437-1443.
    • (2008) FEBS Lett. , vol.582 , pp. 1437-1443
    • Goryachev, A.B.1    Pokhilko, A.V.2
  • 17
    • 84857615923 scopus 로고    scopus 로고
    • A bistable model of cell polarity
    • Semplice M., et al. A bistable model of cell polarity. PLoS ONE 2012, 7:e30977.
    • (2012) PLoS ONE , vol.7
    • Semplice, M.1
  • 18
    • 84859760140 scopus 로고    scopus 로고
    • Negative feedback enhances robustness in the yeast polarity establishment circuit
    • Howell A.S., et al. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 2012, 149:322-333.
    • (2012) Cell , vol.149 , pp. 322-333
    • Howell, A.S.1
  • 19
    • 70350784148 scopus 로고    scopus 로고
    • Singularity in polarization: rewiring yeast cells to make two buds
    • Howell A.S., et al. Singularity in polarization: rewiring yeast cells to make two buds. Cell 2009, 139:731-743.
    • (2009) Cell , vol.139 , pp. 731-743
    • Howell, A.S.1
  • 20
    • 83455213218 scopus 로고    scopus 로고
    • De novo growth zone formation from fission yeast spheroplasts
    • Kelly F.D., Nurse P. De novo growth zone formation from fission yeast spheroplasts. PLoS ONE 2011, 6:e27977.
    • (2011) PLoS ONE , vol.6
    • Kelly, F.D.1    Nurse, P.2
  • 21
    • 0022042267 scopus 로고
    • Growth in cell length in the fission yeast Schizosaccharomyces pombe
    • Mitchison J.M., Nurse P. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 1985, 75:357-376.
    • (1985) J. Cell Sci. , vol.75 , pp. 357-376
    • Mitchison, J.M.1    Nurse, P.2
  • 22
    • 34250321320 scopus 로고    scopus 로고
    • Regulation of cell diameter, For3p localization, and cell symmetry by fission yeast Rho-GAP Rga4p
    • Das M., et al. Regulation of cell diameter, For3p localization, and cell symmetry by fission yeast Rho-GAP Rga4p. Mol. Biol. Cell 2007, 18:2090-2101.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2090-2101
    • Das, M.1
  • 23
    • 0035975991 scopus 로고    scopus 로고
    • Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division
    • Feierbach B., Chang F. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 2001, 11:1656-1665.
    • (2001) Curr. Biol. , vol.11 , pp. 1656-1665
    • Feierbach, B.1    Chang, F.2
  • 24
    • 38749131207 scopus 로고    scopus 로고
    • Spatial controls for growth zone formation during the fission yeast cell cycle
    • Csikász-Nagy A., et al. Spatial controls for growth zone formation during the fission yeast cell cycle. Yeast 2008, 25:59-69.
    • (2008) Yeast , vol.25 , pp. 59-69
    • Csikász-Nagy, A.1
  • 25
    • 84870288139 scopus 로고    scopus 로고
    • Mathematical model for growth regulation of fission yeast Schizosaccharomyces pombe
    • Cerone L., et al. Mathematical model for growth regulation of fission yeast Schizosaccharomyces pombe. PLoS ONE 2012, 7:e49675.
    • (2012) PLoS ONE , vol.7
    • Cerone, L.1
  • 26
    • 84863778973 scopus 로고    scopus 로고
    • Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth
    • Das M., et al. Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science 2012, 337:239-243.
    • (2012) Science , vol.337 , pp. 239-243
    • Das, M.1
  • 27
    • 0141764769 scopus 로고    scopus 로고
    • Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii
    • Knechtle P., et al. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 2003, 14:4140-4154.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4140-4154
    • Knechtle, P.1
  • 28
    • 84866111156 scopus 로고    scopus 로고
    • Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking
    • Oda Y., Fukuda H. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 2012, 337:1333-1336.
    • (2012) Science , vol.337 , pp. 1333-1336
    • Oda, Y.1    Fukuda, H.2
  • 29
    • 77957242676 scopus 로고    scopus 로고
    • Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis
    • Xu T., et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 2010, 143:99-110.
    • (2010) Cell , vol.143 , pp. 99-110
    • Xu, T.1
  • 30
    • 27644538028 scopus 로고    scopus 로고
    • Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes
    • Hwang J.U., et al. Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol. Biol. Cell 2005, 16:5385-5399.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5385-5399
    • Hwang, J.U.1
  • 31
    • 56749160113 scopus 로고    scopus 로고
    • Design principles of biochemical oscillators
    • Novak B., Tyson J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 2008, 9:981-991.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 981-991
    • Novak, B.1    Tyson, J.J.2
  • 32
    • 0037216679 scopus 로고    scopus 로고
    • Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes
    • Holdaway-Clarke T.L., et al. Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J. Exp. Bot. 2003, 54:65-72.
    • (2003) J. Exp. Bot. , vol.54 , pp. 65-72
    • Holdaway-Clarke, T.L.1
  • 33
    • 0035136761 scopus 로고    scopus 로고
    • Cellular oscillations and the regulation of growth: the pollen tube paradigm
    • Feijo J.A., et al. Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 2001, 23:86-94.
    • (2001) Bioessays , vol.23 , pp. 86-94
    • Feijo, J.A.1
  • 34
    • 0028336749 scopus 로고
    • Genetic evidence for a functional interaction between Saccharomyces cerevisiae CDC24 and CDC42
    • Ziman M., Johnson D.I. Genetic evidence for a functional interaction between Saccharomyces cerevisiae CDC24 and CDC42. Yeast 1994, 10:463-474.
    • (1994) Yeast , vol.10 , pp. 463-474
    • Ziman, M.1    Johnson, D.I.2
  • 35
    • 80054702350 scopus 로고    scopus 로고
    • Spatial control of Cdc42 activation determines cell width in fission yeast
    • Kelly F.D., Nurse P. Spatial control of Cdc42 activation determines cell width in fission yeast. Mol. Biol. Cell 2011, 22:3801-3811.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3801-3811
    • Kelly, F.D.1    Nurse, P.2
  • 36
    • 84872110455 scopus 로고    scopus 로고
    • Tracking shallow chemical gradients by actin-driven wandering of the polarization site
    • Dyer J.M., et al. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 2013, 23:32-41.
    • (2013) Curr. Biol. , vol.23 , pp. 32-41
    • Dyer, J.M.1
  • 37
    • 84872099448 scopus 로고    scopus 로고
    • Cdc42 explores the cell periphery for mate selection in fission yeast
    • Bendezu F.O., Martin S.G. Cdc42 explores the cell periphery for mate selection in fission yeast. Curr. Biol. 2013, 23:42-47.
    • (2013) Curr. Biol. , vol.23 , pp. 42-47
    • Bendezu, F.O.1    Martin, S.G.2
  • 38
    • 59349119905 scopus 로고    scopus 로고
    • Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips
    • Kohli M., et al. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J. Cell Sci. 2008, 121:3878-3889.
    • (2008) J. Cell Sci. , vol.121 , pp. 3878-3889
    • Kohli, M.1
  • 39
    • 57649231825 scopus 로고    scopus 로고
    • A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex
    • Hwang J.U., et al. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr. Biol. 2008, 18:1907-1916.
    • (2008) Curr. Biol. , vol.18 , pp. 1907-1916
    • Hwang, J.U.1
  • 40
    • 80555148801 scopus 로고    scopus 로고
    • Functional characterization and cellular dynamics of the CDC-42-RAC-CDC-24 module in Neurospora crassa
    • Araujo-Palomares C.L., et al. Functional characterization and cellular dynamics of the CDC-42-RAC-CDC-24 module in Neurospora crassa. PLoS ONE 2011, 6:e27148.
    • (2011) PLoS ONE , vol.6
    • Araujo-Palomares, C.L.1
  • 41
    • 79651475078 scopus 로고    scopus 로고
    • Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment
    • Layton A.T., et al. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 2011, 21:184-194.
    • (2011) Curr. Biol. , vol.21 , pp. 184-194
    • Layton, A.T.1
  • 42
    • 84861165097 scopus 로고    scopus 로고
    • Mechanistic mathematical model of polarity in yeast
    • Savage N.S., et al. Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell 2012, 23:1998-2013.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1998-2013
    • Savage, N.S.1
  • 43
    • 26444469935 scopus 로고    scopus 로고
    • A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization
    • Ozbudak E.M., et al. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 2005, 9:565-571.
    • (2005) Dev. Cell , vol.9 , pp. 565-571
    • Ozbudak, E.M.1
  • 44
    • 81955161179 scopus 로고    scopus 로고
    • Rapid tip growth: insights from pollen tubes
    • Qin Y., Yang Z. Rapid tip growth: insights from pollen tubes. Semin. Cell Dev. Biol. 2011, 22:816-824.
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 816-824
    • Qin, Y.1    Yang, Z.2
  • 45
    • 80052235775 scopus 로고    scopus 로고
    • Cla4 kinase triggers destruction of the Rac1-GEF Cdc24 during polarized growth in Ustilago maydis
    • Frieser S.H., et al. Cla4 kinase triggers destruction of the Rac1-GEF Cdc24 during polarized growth in Ustilago maydis. Mol. Biol. Cell 2011, 22:3253-3262.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3253-3262
    • Frieser, S.H.1
  • 46
    • 0033635230 scopus 로고    scopus 로고
    • Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast
    • Gulli M.P., et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 2000, 6:1155-1167.
    • (2000) Mol. Cell , vol.6 , pp. 1155-1167
    • Gulli, M.P.1
  • 47
    • 0035831555 scopus 로고    scopus 로고
    • Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p
    • Bose I., et al. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 2001, 276:7176-7186.
    • (2001) J. Biol. Chem. , vol.276 , pp. 7176-7186
    • Bose, I.1
  • 48
    • 68749086088 scopus 로고    scopus 로고
    • Multisite phosphorylation of the guanine nucleotide exchange factor Cdc24 during yeast cell polarization
    • Wai S.C., et al. Multisite phosphorylation of the guanine nucleotide exchange factor Cdc24 during yeast cell polarization. PLoS ONE 2009, 4:e6563.
    • (2009) PLoS ONE , vol.4
    • Wai, S.C.1
  • 49
    • 0042354714 scopus 로고    scopus 로고
    • Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils
    • Xu J., et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 2003, 114:201-214.
    • (2003) Cell , vol.114 , pp. 201-214
    • Xu, J.1
  • 50
    • 82555196507 scopus 로고    scopus 로고
    • A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse
    • Carlin L.M., et al. A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci. Signal. 2011, 4:ra81.
    • (2011) Sci. Signal. , vol.4
    • Carlin, L.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.