메뉴 건너뛰기




Volumn 55, Issue , 2014, Pages 132-140

Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns

Author keywords

Data mining; Jet grouting; Sensitivity analysis; Soft soil; Soil cement mixtures; Soil improvement; Support vector machines; Uniaxial compressive strength

Indexed keywords

JET GROUTING; SOFT-SOIL; SOIL IMPROVEMENT; SOIL-CEMENT MIXTURES; UNIAXIAL COMPRESSIVE STRENGTH;

EID: 84884335176     PISSN: 0266352X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compgeo.2013.08.010     Document Type: Article
Times cited : (116)

References (50)
  • 1
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad U., Piatetsky-Shapiro G., Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996, 39(11):27-34.
    • (1996) Commun ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 2
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. A few useful things to know about machine learning. Commun ACM 2012, 55(10):78-87.
    • (2012) Commun ACM , vol.55 , Issue.10 , pp. 78-87
    • Domingos, P.1
  • 3
    • 80052925636 scopus 로고    scopus 로고
    • An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts
    • Liao K., Fanb J., Huangb C. An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts. Comput Geotech 2011, 38(8):978-986.
    • (2011) Comput Geotech , vol.38 , Issue.8 , pp. 978-986
    • Liao, K.1    Fanb, J.2    Huangb, C.3
  • 4
    • 42649085069 scopus 로고    scopus 로고
    • Support vector machine applied to settlement of shallow foundations on cohesionless soils
    • Samui P. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput Geotech 2008, 35(3):419-427.
    • (2008) Comput Geotech , vol.35 , Issue.3 , pp. 419-427
    • Samui, P.1
  • 5
    • 42649098946 scopus 로고    scopus 로고
    • Slope reliability analysis using a support vector machine
    • Zhao H. Slope reliability analysis using a support vector machine. Comput Geotech 2008, 35(3):459-467.
    • (2008) Comput Geotech , vol.35 , Issue.3 , pp. 459-467
    • Zhao, H.1
  • 6
    • 0031084643 scopus 로고    scopus 로고
    • Concrete strength prediction by means of neural network
    • Lai S., Serra M. Concrete strength prediction by means of neural network. Construct Build Mater 1997, 11(2):93-98.
    • (1997) Construct Build Mater , vol.11 , Issue.2 , pp. 93-98
    • Lai, S.1    Serra, M.2
  • 7
    • 54049113941 scopus 로고    scopus 로고
    • Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
    • Prasad B., Eskandari H., Reddy B. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construct Build Mater 2009, 23(1):117-128.
    • (2009) Construct Build Mater , vol.23 , Issue.1 , pp. 117-128
    • Prasad, B.1    Eskandari, H.2    Reddy, B.3
  • 8
    • 78651485244 scopus 로고    scopus 로고
    • New models for strength and deformability parameter calculation in rock masses using data-mining techniques
    • Miranda T., Correia A., Santos M., Sousa L., Cortez P. New models for strength and deformability parameter calculation in rock masses using data-mining techniques. Int J Geomech 2011, 11:44-58.
    • (2011) Int J Geomech , vol.11 , pp. 44-58
    • Miranda, T.1    Correia, A.2    Santos, M.3    Sousa, L.4    Cortez, P.5
  • 9
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh A., Goh S. Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 2007, 34(5):410-421.
    • (2007) Comput Geotech , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.1    Goh, S.2
  • 10
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behaviour
    • Erzin Y. Artificial neural networks approach for swell pressure versus soil suction behaviour. Can Geotech J 2007, 44(10):1215-1223.
    • (2007) Can Geotech J , vol.44 , Issue.10 , pp. 1215-1223
    • Erzin, Y.1
  • 11
    • 80054824464 scopus 로고    scopus 로고
    • Using data mining techniques to predict deformability properties of jet grouting laboratory formulations over time
    • Tinoco J., Gomes Correia A., Cortez P. Using data mining techniques to predict deformability properties of jet grouting laboratory formulations over time. Progr Artif Intell 2011, 7026:491-505.
    • (2011) Progr Artif Intell , vol.7026 , pp. 491-505
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 12
    • 84867235196 scopus 로고    scopus 로고
    • Seismic reliability assessment of rc structures including soil-structure interaction using wavelet weighted least squares support vector machine
    • Khatibinia M., Fadaee M., Salajegheh J., Salajegheh E. Seismic reliability assessment of rc structures including soil-structure interaction using wavelet weighted least squares support vector machine. Reliability Engineering & System Safety 2013, 110:22-33.
    • (2013) Reliability Engineering & System Safety , vol.110 , pp. 22-33
    • Khatibinia, M.1    Fadaee, M.2    Salajegheh, J.3    Salajegheh, E.4
  • 13
    • 79551475791 scopus 로고    scopus 로고
    • Reliability analysis using radial basis function networks and support vector machines
    • Tan Xh., Bi Wh., Hou Xl., Wang W. Reliability analysis using radial basis function networks and support vector machines. Comput Geotech 2011, 38(2):178-186.
    • (2011) Comput Geotech , vol.38 , Issue.2 , pp. 178-186
    • Tan, X.1    Bi, W.2    Hou, X.3    Wang, W.4
  • 14
    • 72549110480 scopus 로고    scopus 로고
    • Soil type classification and estimation of soil properties using support vector machines
    • Kovačević M., Bajat B., Gajić B. Soil type classification and estimation of soil properties using support vector machines. Geoderma 2010, 154(3):340-347.
    • (2010) Geoderma , vol.154 , Issue.3 , pp. 340-347
    • Kovačević, M.1    Bajat, B.2    Gajić, B.3
  • 15
    • 84884333002 scopus 로고    scopus 로고
    • Case histories of ground improvement solutions using jet-grouting. Geotechnical News; Tecnasol FGE: Fundações e Geotecnia S.A;.
    • Falcão J, Pinto A, Pinto F. Case histories of ground improvement solutions using jet-grouting. Geotechnical News; Tecnasol FGE: Fundações e Geotecnia S.A; 2000.
    • (2000)
    • Falcão, J.1    Pinto, A.2    Pinto, F.3
  • 16
    • 29444434929 scopus 로고    scopus 로고
    • Case history of jet grouting in british columbia. underpinning of CN rail tunnel in North Vancouver. Geotechnical News; The Grout Line;.
    • Gazzarrini P, Kokan M, Jungaro S. Case history of jet grouting in british columbia. underpinning of CN rail tunnel in North Vancouver. Geotechnical News; The Grout Line; 2005.
    • (2005)
    • Gazzarrini, P.1    Kokan, M.2    Jungaro, S.3
  • 17
    • 42149166738 scopus 로고    scopus 로고
    • Assessment of unconfined compressive strength of cement stabilized marine clay
    • Liu S.Y., Zhang D.W., Liu Z.B., Deng Y.F. Assessment of unconfined compressive strength of cement stabilized marine clay. Marine Georesour Geotechnol 2008, 26(1):19-35.
    • (2008) Marine Georesour Geotechnol , vol.26 , Issue.1 , pp. 19-35
    • Liu, S.Y.1    Zhang, D.W.2    Liu, Z.B.3    Deng, Y.F.4
  • 19
    • 77955686437 scopus 로고    scopus 로고
    • Estimation of jet grouting parameters in Shahriar Dam, Iran
    • Nikbakhtan B., Ahangari K., Rahmani N. Estimation of jet grouting parameters in Shahriar Dam, Iran. Min Sci Technol 2010, 20(3):472-477.
    • (2010) Min Sci Technol , vol.20 , Issue.3 , pp. 472-477
    • Nikbakhtan, B.1    Ahangari, K.2    Rahmani, N.3
  • 20
    • 57749174074 scopus 로고    scopus 로고
    • Study of the soil consolidation using reinforced jet grouting by geophysical and geotechnical techniques
    • Padura A., Sevilla J., Navarro J., Bustamante E., Crego E. Study of the soil consolidation using reinforced jet grouting by geophysical and geotechnical techniques. Construct Build Mater 2009, 23(3):1389-1400.
    • (2009) Construct Build Mater , vol.23 , Issue.3 , pp. 1389-1400
    • Padura, A.1    Sevilla, J.2    Navarro, J.3    Bustamante, E.4    Crego, E.5
  • 23
    • 0034477534 scopus 로고    scopus 로고
    • Analysis of single-fluid jet grouting
    • Croce P., Flora A. Analysis of single-fluid jet grouting. Geotechnique 2001, 50(6):739-748.
    • (2001) Geotechnique , vol.50 , Issue.6 , pp. 739-748
    • Croce, P.1    Flora, A.2
  • 25
    • 84884309440 scopus 로고    scopus 로고
    • Application of a sensitivity analysis procedure to interpret uniaxial compressive strength prediction of jet grouting laboratory formulations performed by svm model
    • In: Huybrechts NDN, editor. Brussels, Belgium.
    • Tinoco J, Gomes Correia A, Cortez P. Application of a sensitivity analysis procedure to interpret uniaxial compressive strength prediction of jet grouting laboratory formulations performed by svm model. In: Huybrechts NDN, editor. International symposium & short courses. Brussels, Belgium; 2012. p. 317-26.
    • (2012) International symposium & short courses , pp. 317-326
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 26
    • 13244288169 scopus 로고    scopus 로고
    • Strength and modulus of marine clay-cement mixes
    • Lee F., Lee Y., Chew S., Yong K. Strength and modulus of marine clay-cement mixes. J Geotech Geoenviron Eng 2005, 131(2):178-186.
    • (2005) J Geotech Geoenviron Eng , vol.131 , Issue.2 , pp. 178-186
    • Lee, F.1    Lee, Y.2    Chew, S.3    Yong, K.4
  • 27
    • 33745661181 scopus 로고    scopus 로고
    • Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study
    • Narendra B., Sivapullaiah P., Suresh S., Omkar S. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study. Comput Geotech 2006, 33(3):196-208.
    • (2006) Comput Geotech , vol.33 , Issue.3 , pp. 196-208
    • Narendra, B.1    Sivapullaiah, P.2    Suresh, S.3    Omkar, S.4
  • 28
    • 78650249179 scopus 로고    scopus 로고
    • Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time
    • Tinoco J., Gomes Correia A., Cortez P. Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time. Construct Build Mater 2011, 25(3):1257-1262.
    • (2011) Construct Build Mater , vol.25 , Issue.3 , pp. 1257-1262
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 29
    • 84871386793 scopus 로고    scopus 로고
    • Using sensitivity analysis and visualization techniques to open black box data mining models
    • Cortez P., Embrechts M. Using sensitivity analysis and visualization techniques to open black box data mining models. Inform Sci 2013, 225:1-17.
    • (2013) Inform Sci , vol.225 , pp. 1-17
    • Cortez, P.1    Embrechts, M.2
  • 30
    • 84867474983 scopus 로고    scopus 로고
    • Uniaxial compressive strength prediction of jet grouting columns using support vector machines
    • Guimarães, EUROSIS, Portugal
    • Tinoco J., Gomes Correia A., Cortez P. Uniaxial compressive strength prediction of jet grouting columns using support vector machines. ESM - The Euro Simul Model Conf 2011, 326-330. Guimarães, EUROSIS, Portugal.
    • (2011) ESM - The Euro Simul Model Conf , pp. 326-330
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 32
    • 77958012362 scopus 로고    scopus 로고
    • An introduction to support vector machines: a review
    • Chen Y., Councill I. An introduction to support vector machines: a review. AI Magaz 2003, 24(2):105-107.
    • (2003) AI Magaz , vol.24 , Issue.2 , pp. 105-107
    • Chen, Y.1    Councill, I.2
  • 34
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 2004, 17(1):113-126.
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 35
    • 34548279044 scopus 로고    scopus 로고
    • Model selection for support vector machines via uniform design
    • Huang C., Lee Y., Lin D., Huang S. Model selection for support vector machines via uniform design. Comput Stat Data Anal 2007, 52(1):335-346.
    • (2007) Comput Stat Data Anal , vol.52 , Issue.1 , pp. 335-346
    • Huang, C.1    Lee, Y.2    Lin, D.3    Huang, S.4
  • 36
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 38
    • 4043137356 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Regression
    • Smola A., Schölkopf B. A Tutorial on Support Vector Regression. Statistics and Computing 2004, 14(3):199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 41
    • 0141869869 scopus 로고    scopus 로고
    • A pattern search method for model selection of support vector regression
    • Arizona, USA: Philadelphia: SIAM
    • Momma M, Bennett K. A pattern search method for model selection of support vector regression. In: Proceedings of the SIAM international conference on data mining. Arizona, USA: Philadelphia: SIAM; 2002. p. 261-74.
    • (2002) Proceedings of the SIAM international conference on data mining , pp. 261-274
    • Momma, M.1    Bennett, K.2
  • 42
    • 33750124478 scopus 로고    scopus 로고
    • Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
    • IEEE, Montréal, Québec, Canada
    • Frohlich H., Zell A. Efficient parameter selection for support vector machines in classification and regression via model-based global optimization. Proceedings of the International Joint Conference on Neural Networks (IJCNN'05) 2005, vol. 3:1431-1436. IEEE, Montréal, Québec, Canada.
    • (2005) Proceedings of the International Joint Conference on Neural Networks (IJCNN'05) , vol.3 , pp. 1431-1436
    • Frohlich, H.1    Zell, A.2
  • 44
    • 84884295719 scopus 로고    scopus 로고
    • R. Team. R: a language and environment for statistical computing. Viena Austria: R Foundation for Statistical Computing.
    • R. Team. R: a language and environment for statistical computing. Viena Austria: R Foundation for Statistical Computing; 2008.
    • (2008)
  • 48
    • 84884333330 scopus 로고    scopus 로고
    • Application of data mining techniques to jet grouting columns design. Ph.D. thesis. Guimarães, Portugal: School of Engineering, University of Minho.
    • Tinoco J. Application of data mining techniques to jet grouting columns design. Ph.D. thesis. Guimarães, Portugal: School of Engineering, University of Minho; 2012.
    • (2012)
    • Tinoco, J.1
  • 49
    • 84884345065 scopus 로고    scopus 로고
    • CEN,. Eurocode 2: Design of concrete structures - part 1-1: general rules and rules for buildings. Brussels: European Committee for Standardization.
    • CEN,. Eurocode 2: Design of concrete structures - part 1-1: general rules and rules for buildings. Brussels: European Committee for Standardization; 2004.
    • (2004)
  • 50
    • 84884320580 scopus 로고    scopus 로고
    • Considerations on laboratory test results of cement stabilised sludge. In: Deep mixing '05: 1st international conference on deep mixing - best practice and recent advances
    • Van Impe W, Verástegui Flores R, Mengé P, Van den Broeck M. Considerations on laboratory test results of cement stabilised sludge. In: Deep mixing '05: 1st international conference on deep mixing - best practice and recent advances; 2005. p. 163-8.
    • (2005) , pp. 163-168
    • Van Impe, W.1    Verástegui Flores, R.2    Mengé, P.3    Van den Broeck, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.