메뉴 건너뛰기




Volumn 7026 LNAI, Issue , 2011, Pages 491-505

Using data mining techniques to predict deformability properties of jet grouting laboratory formulations over time

Author keywords

Artificial Neural Networks; Functional Networks; Ground improvement; Jet Grouting; Regression; Support Vector Machines; Young Modulus

Indexed keywords

FUNCTIONAL NETWORK; GROUND IMPROVEMENT; JET GROUTING; REGRESSION; SUPPORT VECTOR; YOUNG MODULUS;

EID: 80054824464     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-24769-9_36     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 1
    • 77955686437 scopus 로고    scopus 로고
    • Estimation of jet grouting parameters in Shahriar dam. Iran
    • Nikbakhtan, B., Ahangari, K., Rahmani, N.: Estimation of jet grouting parameters in Shahriar dam. Iran, Mining Science and Technology 20(3), 472-477 (2010)
    • (2010) Mining Science and Technology , vol.20 , Issue.3 , pp. 472-477
    • Nikbakhtan, B.1    Ahangari, K.2    Rahmani, N.3
  • 3
    • 0034477534 scopus 로고    scopus 로고
    • Analysis of single-fluid jet grouting
    • Croce, P., Flora, A.: Analysis of single-fluid jet grouting. Géotechnique 51, 905-906 (2001)
    • (2001) Géotechnique , vol.51 , pp. 905-906
    • Croce, P.1    Flora, A.2
  • 7
    • 0031084643 scopus 로고    scopus 로고
    • Concrete strength prediction by means of neural network
    • Lai, S., Serra, M.: Concrete strength prediction by means of neural network. Construction and Building Materials 11(2), 93-98 (1997)
    • (1997) Construction and Building Materials , vol.11 , Issue.2 , pp. 93-98
    • Lai, S.1    Serra, M.2
  • 8
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh, A., Goh, S.: Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Computers and Geotechnics 34(5), 410-421 (2007)
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.1    Goh, S.2
  • 9
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting settlement of shallow foundations
    • Rezania, R., Javadi, A.: A new genetic programming model for predicting settlement of shallow foundations. Canadian Geotechnical Journal 44(12), 1462-1473 (2007)
    • (2007) Canadian Geotechnical Journal , vol.44 , Issue.12 , pp. 1462-1473
    • Rezania, R.1    Javadi, A.2
  • 12
    • 78650249179 scopus 로고    scopus 로고
    • Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time
    • Tinoco, J., Gomes Correia, A., Cortez, P.: Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time. Constructions and Building Material 25, 1257-1262 (2011)
    • (2011) Constructions and Building Material , vol.25 , pp. 1257-1262
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 13
    • 80054826458 scopus 로고    scopus 로고
    • Application of Data Mining Techniques in the Estimation of Mechanical Properties of Jet Grouting Laboratory Formulations over Time
    • Tinoco, J., Gomes Correia, A., Cortez, P.: Application of Data Mining Techniques in the Estimation of Mechanical Properties of Jet Grouting Laboratory Formulations over Time. Advances in Intelligence and Soft Computing 96, 283-292 (2011)
    • (2011) Advances in Intelligence and Soft Computing , vol.96 , pp. 283-292
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 14
    • 84859959688 scopus 로고    scopus 로고
    • A Data Mining Approach for Predicting Jet Grouting Geomechanical Parameters
    • Chen, D., Fu, H. (eds.) Geotechnical Special Publications (GSP), Hunan
    • Tinoco, J., Gomes Correia, A., Cortez, P.: A Data Mining Approach for Predicting Jet Grouting Geomechanical Parameters. In: Chen, D., Fu, H. (eds.) Proceedings of GeoHunan International Conference II, vol. 223, pp. 97-104. Geotechnical Special Publications (GSP), Hunan (2011)
    • (2011) Proceedings of GeoHunan International Conference II , vol.223 , pp. 97-104
    • Tinoco, J.1    Gomes Correia, A.2    Cortez, P.3
  • 17
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199-222 (2004)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 18
    • 77954877923 scopus 로고    scopus 로고
    • Data mining with neural networks and support vector machines using the r/rminer tool
    • Perner, P. (ed.) ICDM 2010. Springer, Heidelberg
    • Cortez, P.: Data mining with neural networks and support vector machines using the r/rminer tool. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 572-583. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6171 , pp. 572-583
    • Cortez, P.1
  • 19
    • 80054824211 scopus 로고    scopus 로고
    • On-line Documentation, accessed January 2011
    • GAMS Development Corporation, On-line Documentation, http://www.gams.com/ docs/document.htm (accessed January 2011)
  • 20
    • 0346250790 scopus 로고    scopus 로고
    • Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
    • Cherkassky, V., Ma, Y.: Practical Selection of SVM Parameters and Noise Estimation for SVM Regression. Neural Networks 17(1), 113-126 (2004)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.