메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 13-23

Network anomaly detection with the restricted Boltzmann machine

Author keywords

Anomaly detection; Energy based models; Intrusion detection; Restricted Boltzmann machine; Semi supervised learning

Indexed keywords

ANOMALY DETECTION; ANOMALY DETECTION SYSTEMS; ENERGY-BASED MODELS; INCOMPLETE TRAINING DATA; MACHINE LEARNING TECHNIQUES; NETWORK ANOMALY DETECTION; RESTRICTED BOLTZMANN MACHINE; SEMI-SUPERVISED LEARNING;

EID: 84884203185     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.050     Document Type: Article
Times cited : (351)

References (29)
  • 2
    • 84885849646 scopus 로고
    • Computer Security Threat Monitoring and Surveillance, Technical Report, Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
    • J P. Anderson, Computer Security Threat Monitoring and Surveillance, Technical Report, Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology, 1980.
    • (1980)
    • Anderson, J.P.1
  • 3
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection. techniques, systems and challenges
    • Garcia-Teodoro P., Diaz-Verdejo J., Macia-Fernandez G., Vazquez E. Anomaly-based network intrusion detection. techniques, systems and challenges. Comput. Secur. 2009, 28(1-2):18-28.
    • (2009) Comput. Secur. , vol.28 , Issue.1-2 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    Macia-Fernandez, G.3    Vazquez, E.4
  • 4
    • 81255123403 scopus 로고    scopus 로고
    • A generic intrusion detection and diagnoser system based on complex event processing
    • Proceedings - 1st International Conference on Data Compression, Communication, and Processing, CCP 2011, IEEE
    • M. Ficco, L. Romano, A generic intrusion detection and diagnoser system based on complex event processing, in: Proceedings - 1st International Conference on Data Compression, Communication, and Processing, CCP 2011, IEEE, 2011, pp. 275-284.
    • (2011) , pp. 275-284
    • Ficco, M.1    Romano, L.2
  • 5
    • 61849174060 scopus 로고    scopus 로고
    • A nonlinear, recurrence-based approach to traffic classification
    • Palmieri F., Fiore U. A nonlinear, recurrence-based approach to traffic classification. Comput. Networks 2009, 53(6):761-773.
    • (2009) Comput. Networks , vol.53 , Issue.6 , pp. 761-773
    • Palmieri, F.1    Fiore, U.2
  • 6
    • 77956393826 scopus 로고    scopus 로고
    • Network anomaly detection through nonlinear analysis
    • Palmieri F., Fiore U. Network anomaly detection through nonlinear analysis. Comput. Secur. 2010, 29(7):737-755.
    • (2010) Comput. Secur. , vol.29 , Issue.7 , pp. 737-755
    • Palmieri, F.1    Fiore, U.2
  • 7
    • 84859537598 scopus 로고    scopus 로고
    • FRaC. a feature-modeling approach for semi-supervised and unsupervised anomaly detection
    • Noto K., Brodley C., Slonim D. FRaC. a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Mining knowl. Discovery 2012, 25(1):109-133.
    • (2012) Data Mining knowl. Discovery , vol.25 , Issue.1 , pp. 109-133
    • Noto, K.1    Brodley, C.2    Slonim, D.3
  • 8
    • 72949104669 scopus 로고    scopus 로고
    • Semi-supervised co-training and active learning based approach for multi-view intrusion detection
    • Proceedings of the 2009 ACM symposium on Applied Computing, SAC '09, ACM
    • C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen, S.-Y. Huang, Semi-supervised co-training and active learning based approach for multi-view intrusion detection, in: Proceedings of the 2009 ACM symposium on Applied Computing, SAC '09, ACM, 2009, pp. 2042-2048.
    • (2009) , pp. 2042-2048
    • Mao, C.-H.1    Lee, H.-M.2    Parikh, D.3    Chen, T.4    Huang, S.-Y.5
  • 9
    • 69949173326 scopus 로고    scopus 로고
    • Semi-supervised learning methods for network intrusion detection
    • IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC '08, IEEE
    • C. Chen, Y. Gong, Y. Tian, Semi-supervised learning methods for network intrusion detection, in: IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC '08, IEEE, 2008, pp. 2603-2608.
    • (2008) , pp. 2603-2608
    • Chen, C.1    Gong, Y.2    Tian, Y.3
  • 10
    • 82455199118 scopus 로고    scopus 로고
    • Improved competitive learning neural networks for network intrusion and fraud detection
    • Lei J.Z., Ghorbani A.A. Improved competitive learning neural networks for network intrusion and fraud detection. Neurocomputing 2012, 75(1):135-145.
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 135-145
    • Lei, J.Z.1    Ghorbani, A.A.2
  • 11
    • 85092755815 scopus 로고    scopus 로고
    • Machine learning approaches to network anomaly detection
    • Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques, SYSML'07, USENIX Association, Berkeley, CA, USA, pp. 7:1-7:6.
    • T. Ahmed, B. Oreshkin, M. Coates, Machine learning approaches to network anomaly detection, in: Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques, SYSML'07, USENIX Association, Berkeley, CA, USA, 2007, pp. 7:1-7:6.
    • (2007)
    • Ahmed, T.1    Oreshkin, B.2    Coates, B.3
  • 12
    • 38949115553 scopus 로고    scopus 로고
    • Learning minimum volume sets with support vector machines
    • Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, IEEE
    • M. Davenport, R. Baraniuk, C. Scott, Learning minimum volume sets with support vector machines, in: Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, IEEE, 2006, pp. 301-306.
    • (2006) , pp. 301-306
    • Davenport, M.1    Baraniuk, R.2    Scott, C.3
  • 13
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 14
    • 34848816179 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images
    • Hinton G.E. To recognize shapes, first learn to generate images. Prog. Brain Res. 2007, 165:535-547.
    • (2007) Prog. Brain Res. , vol.165 , pp. 535-547
    • Hinton, G.E.1
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G., Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 19
    • 84861125212 scopus 로고    scopus 로고
    • A Practical Guide to Training Restricted Boltzmann Machines, Momentum
    • G.E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Momentum, vol. 9, 2010, pp. 1-21.
    • (2010) , vol.9 , pp. 1-21
    • Hinton, G.E.1
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hintont G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 21
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot X., Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. - Proc. Track 2010, 9:249-256.
    • (2010) J. Mach. Learn. Res. - Proc. Track , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 22
    • 56449110012 scopus 로고    scopus 로고
    • Classification using Discriminative Restricted Boltzmann Machines
    • Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML 2008), ACM
    • H. Larochelle, Y. Bengio, Classification using Discriminative Restricted Boltzmann Machines, in: Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML 2008), ACM, 2008, pp. 536-543.
    • (2008) , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 24
    • 80052622942 scopus 로고    scopus 로고
    • Automated detection and containment of worms and viruses into heterogeneous networks. a simple network immune system
    • Palmieri F., Fiore U. Automated detection and containment of worms and viruses into heterogeneous networks. a simple network immune system. Int. J. Wireless Mobile Comput. 2007, 2(1):47-58.
    • (2007) Int. J. Wireless Mobile Comput. , vol.2 , Issue.1 , pp. 47-58
    • Palmieri, F.1    Fiore, U.2
  • 25
    • 84860237427 scopus 로고    scopus 로고
    • Host-based intrusion detection systems adapted from agent-based artificial immune systems
    • Ou C.-M. Host-based intrusion detection systems adapted from agent-based artificial immune systems. Neurocomputing 2012, 88(0):78-86.
    • (2012) Neurocomputing , vol.88 , Issue.0 , pp. 78-86
    • Ou, C.-M.1
  • 26
    • 80052350968 scopus 로고    scopus 로고
    • Self-Similar Properties of Spam
    • Proceedings of the Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS, IEEE
    • J.-S.R. Lee, H.-D.J. Jeong, D.C. McNickle, K. Pawlikowski, Self-Similar Properties of Spam, in: Proceedings of the Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS, IEEE, 2011, pp. 347-352.
    • (2011) , pp. 347-352
    • Lee, J.-S.R.1    Jeong, H.-D.J.2    McNickle, D.C.3    Pawlikowski, K.4
  • 27
    • 84867731060 scopus 로고    scopus 로고
    • Device tracking in private networks via NAPT log analysis
    • Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, IEEE
    • A. Castiglione, A. De Santis, U. Fiore, F. Palmieri, Device tracking in private networks via NAPT log analysis, in: Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, IEEE, 2012, pp. 603-608.
    • (2012) , pp. 603-608
    • Castiglione, A.1    De Santis, A.2    Fiore, U.3    Palmieri, F.4
  • 28
    • 84885844447 scopus 로고    scopus 로고
    • An Assessment of the DARPA IDS Evaluation Dataset Using Snort, Technical Report, University of California, Davis, Department of Computer Science
    • S.T. Brugger, J. Chow, An Assessment of the DARPA IDS Evaluation Dataset Using Snort, Technical Report, University of California, Davis, Department of Computer Science, 2007.
    • (2007)
    • Brugger, S.T.1    Chow, J.2
  • 29
    • 84897599943 scopus 로고    scopus 로고
    • A botnet-based command and control approach relying on swarm intelligence
    • J. Network Comput. Appl., in press.
    • A. Castiglione, R. De Prisco, A. De Santis, U. Fiore, F. Palmieri, A botnet-based command and control approach relying on swarm intelligence, J. Network Comput. Appl., in press. http://dx.doi.org/10.1016/j.jnca.2013.05.002.
    • Castiglione, A.1    De Prisco, R.2    De Santis, A.3    Fiore, U.4    Palmieri, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.