-
2
-
-
84885849646
-
Computer Security Threat Monitoring and Surveillance, Technical Report, Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
-
J P. Anderson, Computer Security Threat Monitoring and Surveillance, Technical Report, Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology, 1980.
-
(1980)
-
-
Anderson, J.P.1
-
3
-
-
57849130705
-
Anomaly-based network intrusion detection. techniques, systems and challenges
-
Garcia-Teodoro P., Diaz-Verdejo J., Macia-Fernandez G., Vazquez E. Anomaly-based network intrusion detection. techniques, systems and challenges. Comput. Secur. 2009, 28(1-2):18-28.
-
(2009)
Comput. Secur.
, vol.28
, Issue.1-2
, pp. 18-28
-
-
Garcia-Teodoro, P.1
Diaz-Verdejo, J.2
Macia-Fernandez, G.3
Vazquez, E.4
-
4
-
-
81255123403
-
A generic intrusion detection and diagnoser system based on complex event processing
-
Proceedings - 1st International Conference on Data Compression, Communication, and Processing, CCP 2011, IEEE
-
M. Ficco, L. Romano, A generic intrusion detection and diagnoser system based on complex event processing, in: Proceedings - 1st International Conference on Data Compression, Communication, and Processing, CCP 2011, IEEE, 2011, pp. 275-284.
-
(2011)
, pp. 275-284
-
-
Ficco, M.1
Romano, L.2
-
5
-
-
61849174060
-
A nonlinear, recurrence-based approach to traffic classification
-
Palmieri F., Fiore U. A nonlinear, recurrence-based approach to traffic classification. Comput. Networks 2009, 53(6):761-773.
-
(2009)
Comput. Networks
, vol.53
, Issue.6
, pp. 761-773
-
-
Palmieri, F.1
Fiore, U.2
-
6
-
-
77956393826
-
Network anomaly detection through nonlinear analysis
-
Palmieri F., Fiore U. Network anomaly detection through nonlinear analysis. Comput. Secur. 2010, 29(7):737-755.
-
(2010)
Comput. Secur.
, vol.29
, Issue.7
, pp. 737-755
-
-
Palmieri, F.1
Fiore, U.2
-
7
-
-
84859537598
-
FRaC. a feature-modeling approach for semi-supervised and unsupervised anomaly detection
-
Noto K., Brodley C., Slonim D. FRaC. a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Mining knowl. Discovery 2012, 25(1):109-133.
-
(2012)
Data Mining knowl. Discovery
, vol.25
, Issue.1
, pp. 109-133
-
-
Noto, K.1
Brodley, C.2
Slonim, D.3
-
8
-
-
72949104669
-
Semi-supervised co-training and active learning based approach for multi-view intrusion detection
-
Proceedings of the 2009 ACM symposium on Applied Computing, SAC '09, ACM
-
C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen, S.-Y. Huang, Semi-supervised co-training and active learning based approach for multi-view intrusion detection, in: Proceedings of the 2009 ACM symposium on Applied Computing, SAC '09, ACM, 2009, pp. 2042-2048.
-
(2009)
, pp. 2042-2048
-
-
Mao, C.-H.1
Lee, H.-M.2
Parikh, D.3
Chen, T.4
Huang, S.-Y.5
-
9
-
-
69949173326
-
Semi-supervised learning methods for network intrusion detection
-
IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC '08, IEEE
-
C. Chen, Y. Gong, Y. Tian, Semi-supervised learning methods for network intrusion detection, in: IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC '08, IEEE, 2008, pp. 2603-2608.
-
(2008)
, pp. 2603-2608
-
-
Chen, C.1
Gong, Y.2
Tian, Y.3
-
10
-
-
82455199118
-
Improved competitive learning neural networks for network intrusion and fraud detection
-
Lei J.Z., Ghorbani A.A. Improved competitive learning neural networks for network intrusion and fraud detection. Neurocomputing 2012, 75(1):135-145.
-
(2012)
Neurocomputing
, vol.75
, Issue.1
, pp. 135-145
-
-
Lei, J.Z.1
Ghorbani, A.A.2
-
11
-
-
85092755815
-
Machine learning approaches to network anomaly detection
-
Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques, SYSML'07, USENIX Association, Berkeley, CA, USA, pp. 7:1-7:6.
-
T. Ahmed, B. Oreshkin, M. Coates, Machine learning approaches to network anomaly detection, in: Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques, SYSML'07, USENIX Association, Berkeley, CA, USA, 2007, pp. 7:1-7:6.
-
(2007)
-
-
Ahmed, T.1
Oreshkin, B.2
Coates, B.3
-
12
-
-
38949115553
-
Learning minimum volume sets with support vector machines
-
Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, IEEE
-
M. Davenport, R. Baraniuk, C. Scott, Learning minimum volume sets with support vector machines, in: Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, IEEE, 2006, pp. 301-306.
-
(2006)
, pp. 301-306
-
-
Davenport, M.1
Baraniuk, R.2
Scott, C.3
-
13
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
14
-
-
34848816179
-
To recognize shapes, first learn to generate images
-
Hinton G.E. To recognize shapes, first learn to generate images. Prog. Brain Res. 2007, 165:535-547.
-
(2007)
Prog. Brain Res.
, vol.165
, pp. 535-547
-
-
Hinton, G.E.1
-
15
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G., Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
16
-
-
84867781089
-
Hybrid intelligent intrusion detection scheme
-
Salama M.A., Eid H.F., Ramadan R.A., Darwish A., Hassanien A.E. Hybrid intelligent intrusion detection scheme. Soft Comput. Ind. Appl. 2011, 293-303.
-
(2011)
Soft Comput. Ind. Appl.
, pp. 293-303
-
-
Salama, M.A.1
Eid, H.F.2
Ramadan, R.A.3
Darwish, A.4
Hassanien, A.E.5
-
19
-
-
84861125212
-
A Practical Guide to Training Restricted Boltzmann Machines, Momentum
-
G.E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Momentum, vol. 9, 2010, pp. 1-21.
-
(2010)
, vol.9
, pp. 1-21
-
-
Hinton, G.E.1
-
20
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D.E., Hintont G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hintont, G.E.2
Williams, R.J.3
-
21
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot X., Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. - Proc. Track 2010, 9:249-256.
-
(2010)
J. Mach. Learn. Res. - Proc. Track
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
22
-
-
56449110012
-
Classification using Discriminative Restricted Boltzmann Machines
-
Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML 2008), ACM
-
H. Larochelle, Y. Bengio, Classification using Discriminative Restricted Boltzmann Machines, in: Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML 2008), ACM, 2008, pp. 536-543.
-
(2008)
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
24
-
-
80052622942
-
Automated detection and containment of worms and viruses into heterogeneous networks. a simple network immune system
-
Palmieri F., Fiore U. Automated detection and containment of worms and viruses into heterogeneous networks. a simple network immune system. Int. J. Wireless Mobile Comput. 2007, 2(1):47-58.
-
(2007)
Int. J. Wireless Mobile Comput.
, vol.2
, Issue.1
, pp. 47-58
-
-
Palmieri, F.1
Fiore, U.2
-
25
-
-
84860237427
-
Host-based intrusion detection systems adapted from agent-based artificial immune systems
-
Ou C.-M. Host-based intrusion detection systems adapted from agent-based artificial immune systems. Neurocomputing 2012, 88(0):78-86.
-
(2012)
Neurocomputing
, vol.88
, Issue.0
, pp. 78-86
-
-
Ou, C.-M.1
-
26
-
-
80052350968
-
Self-Similar Properties of Spam
-
Proceedings of the Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS, IEEE
-
J.-S.R. Lee, H.-D.J. Jeong, D.C. McNickle, K. Pawlikowski, Self-Similar Properties of Spam, in: Proceedings of the Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS, IEEE, 2011, pp. 347-352.
-
(2011)
, pp. 347-352
-
-
Lee, J.-S.R.1
Jeong, H.-D.J.2
McNickle, D.C.3
Pawlikowski, K.4
-
27
-
-
84867731060
-
Device tracking in private networks via NAPT log analysis
-
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, IEEE
-
A. Castiglione, A. De Santis, U. Fiore, F. Palmieri, Device tracking in private networks via NAPT log analysis, in: Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, IEEE, 2012, pp. 603-608.
-
(2012)
, pp. 603-608
-
-
Castiglione, A.1
De Santis, A.2
Fiore, U.3
Palmieri, F.4
-
28
-
-
84885844447
-
An Assessment of the DARPA IDS Evaluation Dataset Using Snort, Technical Report, University of California, Davis, Department of Computer Science
-
S.T. Brugger, J. Chow, An Assessment of the DARPA IDS Evaluation Dataset Using Snort, Technical Report, University of California, Davis, Department of Computer Science, 2007.
-
(2007)
-
-
Brugger, S.T.1
Chow, J.2
-
29
-
-
84897599943
-
A botnet-based command and control approach relying on swarm intelligence
-
J. Network Comput. Appl., in press.
-
A. Castiglione, R. De Prisco, A. De Santis, U. Fiore, F. Palmieri, A botnet-based command and control approach relying on swarm intelligence, J. Network Comput. Appl., in press. http://dx.doi.org/10.1016/j.jnca.2013.05.002.
-
-
-
Castiglione, A.1
De Prisco, R.2
De Santis, A.3
Fiore, U.4
Palmieri, F.5
|