메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Machine learning approaches to network anomaly detection

Author keywords

[No Author keywords available]

Indexed keywords

ACCIDENTS; ANOMALY DETECTION; DATA TRANSFER; INTERNET PROTOCOLS; LEARNING ALGORITHMS; SECURITY SYSTEMS; SIGNAL DETECTION; TRAFFIC SURVEYS;

EID: 85092755815     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (99)

References (19)
  • 1
    • 84893496533 scopus 로고    scopus 로고
    • Aberrant behavior detection in time series for network monitoring
    • New Orleans, LA, Dec
    • J. Brutlag, “Aberrant behavior detection in time series for network monitoring,” in Proc. USENIX System Admin. Conf. (LISA), New Orleans, LA, Dec. 2000.
    • (2000) Proc. USENIX System Admin. Conf. (LISA)
    • Brutlag, J.1
  • 2
    • 26844499879 scopus 로고    scopus 로고
    • Statistical analysis of network traffic for adaptive faults detection
    • Sep
    • H. Hajji, “Statistical analysis of network traffic for adaptive faults detection,” IEEE Trans. Neural Networks, vol. 16, no. 5, pp. 1053-1063, Sep. 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.5 , pp. 1053-1063
    • Hajji, H.1
  • 3
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • May
    • K. Yamanish, J.-I. Takeuchi, G. Williams, and P. Milne, “On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms,” Data Mining and Knowledge Discovery, vol. 8, no. 3, pp. 275-300, May 2004.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.3 , pp. 275-300
    • Yamanish, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4
  • 5
    • 33746634918 scopus 로고    scopus 로고
    • Diagnosing network-wide traffic anomalies
    • Portland, OR, Aug
    • A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in Proc. ACM SIGCOMM, Portland, OR, Aug. 2004.
    • (2004) Proc. ACM SIGCOMM
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 6
    • 33746603312 scopus 로고    scopus 로고
    • Mining Anomalies Using Traffic Feature Distributions
    • Philadelphia, PA, Aug
    • A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic Feature Distributions,” in Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.
    • (2005) Proc. ACM SIGCOMM
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 8
  • 12
  • 14
    • 31544483334 scopus 로고    scopus 로고
    • Estimation of high-density regions using one-class neighbor machines
    • Mar
    • A. Muñoz and J. Moguerza, “Estimation of high-density regions using one-class neighbor machines,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 476-480, Mar. 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , Issue.3 , pp. 476-480
    • Muñoz, A.1    Moguerza, J.2
  • 15
    • 34548324813 scopus 로고    scopus 로고
    • Multivariate online anomaly detection using kernel recursive least squares
    • Anchorage, AK, May to appear
    • T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly detection using kernel recursive least squares,” in Proc. IEEE Infocom, Anchorage, AK, May 2007, to appear.
    • (2007) Proc. IEEE Infocom
    • Ahmed, T.1    Coates, M.2    Lakhina, A.3
  • 18
    • 84945288855 scopus 로고    scopus 로고
    • Transports Quebec. [Online]. Available
    • Transports Quebec. Organization webpage. [Online]. Available: http://www.mtq.gouv.qc.ca/en/information/cameras/montreal/index.asp
    • Organization webpage
  • 19
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least squares algorithm
    • Aug
    • Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares algorithm,” IEEE Trans. Signal Proc., vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
    • (2004) IEEE Trans. Signal Proc , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.