-
1
-
-
84893496533
-
Aberrant behavior detection in time series for network monitoring
-
New Orleans, LA, Dec
-
J. Brutlag, “Aberrant behavior detection in time series for network monitoring,” in Proc. USENIX System Admin. Conf. (LISA), New Orleans, LA, Dec. 2000.
-
(2000)
Proc. USENIX System Admin. Conf. (LISA)
-
-
Brutlag, J.1
-
2
-
-
26844499879
-
Statistical analysis of network traffic for adaptive faults detection
-
Sep
-
H. Hajji, “Statistical analysis of network traffic for adaptive faults detection,” IEEE Trans. Neural Networks, vol. 16, no. 5, pp. 1053-1063, Sep. 2005.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.5
, pp. 1053-1063
-
-
Hajji, H.1
-
3
-
-
3543125360
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
May
-
K. Yamanish, J.-I. Takeuchi, G. Williams, and P. Milne, “On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms,” Data Mining and Knowledge Discovery, vol. 8, no. 3, pp. 275-300, May 2004.
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, Issue.3
, pp. 275-300
-
-
Yamanish, K.1
Takeuchi, J.-I.2
Williams, G.3
Milne, P.4
-
4
-
-
21844462874
-
Structural analysis of network traffic flows
-
New York, NY, Jun
-
A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N. Taft, “Structural analysis of network traffic flows,” in Proc. ACM SIGMETRICS, New York, NY, Jun. 2004.
-
(2004)
Proc. ACM SIGMETRICS
-
-
Lakhina, A.1
Papagiannaki, K.2
Crovella, M.3
Diot, C.4
Kolaczyk, E.5
Taft, N.6
-
5
-
-
33746634918
-
Diagnosing network-wide traffic anomalies
-
Portland, OR, Aug
-
A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in Proc. ACM SIGCOMM, Portland, OR, Aug. 2004.
-
(2004)
Proc. ACM SIGCOMM
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
6
-
-
33746603312
-
Mining Anomalies Using Traffic Feature Distributions
-
Philadelphia, PA, Aug
-
A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic Feature Distributions,” in Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.
-
(2005)
Proc. ACM SIGCOMM
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
7
-
-
51349158726
-
In-network PCA and anomaly detection
-
19th ed., B. Schölkopf, J. Platt and T. Hoffman, Ed. Cambridge, MA: MIT Press, to appear
-
L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft, “In-network PCA and anomaly detection,” in Advances in Neural Information Processing Systems, 19th ed., B. Schölkopf, J. Platt and T. Hoffman, Ed. Cambridge, MA: MIT Press, 2007, to appear.
-
(2007)
Advances in Neural Information Processing Systems
-
-
Huang, L.1
Nguyen, X.2
Garofalakis, M.3
Jordan, M.4
Joseph, A.5
Taft, N.6
-
8
-
-
33745235087
-
One-class novelty detection for seizure analysis from intracranial EEG
-
Jun
-
A. Gardner, A. Krieger, G. Vachtsevanos, and B. Litt, “One-class novelty detection for seizure analysis from intracranial EEG,” J. Machine Learning Research (JMLR), vol. 7, pp. 1025-1044, Jun. 2006.
-
(2006)
J. Machine Learning Research (JMLR)
, vol.7
, pp. 1025-1044
-
-
Gardner, A.1
Krieger, A.2
Vachtsevanos, G.3
Litt, B.4
-
9
-
-
84947121655
-
Detecting outliers using transduction and statistical testing
-
Philadelphia, PA, Aug
-
D. Barbará, C. Domeniconi and J. Rogers, “Detecting outliers using transduction and statistical testing,” in Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), Philadelphia, PA, Aug. 2003.
-
(2003)
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD)
-
-
Barbará, D.1
Domeniconi, C.2
Rogers, J.3
-
11
-
-
33749540435
-
Adaptive event detection with time-varying Poisson processes
-
Philadelphia, PA, Aug
-
A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-varying Poisson processes,” in Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), Philadelphia, PA, Aug. 2006.
-
(2006)
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD)
-
-
Ihler, A.1
Hutchins, J.2
Smyth, P.3
-
12
-
-
0024984441
-
Adaptive real-time anomaly detection using inductively generated sequential patterns
-
Oakland, CA, May
-
H. Teng, K. Chen, and S. Lu, “Adaptive real-time anomaly detection using inductively generated sequential patterns,” in Proc. IEEE Comp. Soc. Symp. Research in Security and Privacy, Oakland, CA, May 1990.
-
(1990)
Proc. IEEE Comp. Soc. Symp. Research in Security and Privacy
-
-
Teng, H.1
Chen, K.2
Lu, S.3
-
14
-
-
31544483334
-
Estimation of high-density regions using one-class neighbor machines
-
Mar
-
A. Muñoz and J. Moguerza, “Estimation of high-density regions using one-class neighbor machines,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 476-480, Mar. 2006.
-
(2006)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.28
, Issue.3
, pp. 476-480
-
-
Muñoz, A.1
Moguerza, J.2
-
15
-
-
34548324813
-
Multivariate online anomaly detection using kernel recursive least squares
-
Anchorage, AK, May to appear
-
T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly detection using kernel recursive least squares,” in Proc. IEEE Infocom, Anchorage, AK, May 2007, to appear.
-
(2007)
Proc. IEEE Infocom
-
-
Ahmed, T.1
Coates, M.2
Lakhina, A.3
-
16
-
-
38949115553
-
Learning minimum volume sets with support vector machines
-
Maynooth, Ireland, Sep
-
M. Davenport, R. Baraniuk, and C. Scott, “Learning minimum volume sets with support vector machines,” in Proc. IEEE Int. Workshop on Machine Learning for Signal Processing (MLSP), Maynooth, Ireland, Sep. 2006.
-
(2006)
Proc. IEEE Int. Workshop on Machine Learning for Signal Processing (MLSP)
-
-
Davenport, M.1
Baraniuk, R.2
Scott, C.3
-
18
-
-
84945288855
-
-
Transports Quebec. [Online]. Available
-
Transports Quebec. Organization webpage. [Online]. Available: http://www.mtq.gouv.qc.ca/en/information/cameras/montreal/index.asp
-
Organization webpage
-
-
-
19
-
-
3543096272
-
The kernel recursive least squares algorithm
-
Aug
-
Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares algorithm,” IEEE Trans. Signal Proc., vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
-
(2004)
IEEE Trans. Signal Proc
, vol.52
, Issue.8
, pp. 2275-2285
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
|