메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 398-405

Low-rank representation with local constraint for graph construction

Author keywords

Classification; Learning; Local regularization; Rank minimization; Semi supervised; Weighted 1 norm

Indexed keywords

LEARNING; LOCAL REGULARIZATION; LOW-RANK REPRESENTATIONS; PHYSICAL INTERPRETATION; RANK MINIMIZATIONS; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SIMILARITY COEFFICIENTS;

EID: 84884202455     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.06.013     Document Type: Article
Times cited : (75)

References (46)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 2
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 80555131196 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints
    • Yan S., Bouaziz S., Lee D., Barlow J. Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints. Neurocomputing 2012, 76:114-124.
    • (2012) Neurocomputing , vol.76 , pp. 114-124
    • Yan, S.1    Bouaziz, S.2    Lee, D.3    Barlow, J.4
  • 7
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Proceedings of ICML
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of ICML, 2003, pp. 912-919.
    • (2003) , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 8
    • 77952552460 scopus 로고    scopus 로고
    • Classification by semi-supervised discriminative regularization
    • Wu F., Wang W., Yang Y., Zhuang Y., Nie F. Classification by semi-supervised discriminative regularization. Neurocomputing 2010, 73:1641-1651.
    • (2010) Neurocomputing , vol.73 , pp. 1641-1651
    • Wu, F.1    Wang, W.2    Yang, Y.3    Zhuang, Y.4    Nie, F.5
  • 9
    • 49049111209 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis
    • Proceedings of ICCV
    • D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: Proceedings of ICCV, 2007, pp. 1-7.
    • (2007) , pp. 1-7
    • Cai, D.1    He, X.2    Han, J.3
  • 10
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Camps-Valls G., Bandos T., Zhou D. Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 2007, 45(10):2044-3054.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.10 , pp. 2044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 12
    • 84860231071 scopus 로고    scopus 로고
    • A multiple kernel framework for inductive semi-supervised SVM learning
    • Tian X., Gasso G., Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing 2012, 90:46-58.
    • (2012) Neurocomputing , vol.90 , pp. 46-58
    • Tian, X.1    Gasso, G.2    Canu, S.3
  • 13
    • 84862198325 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning based on local linear regression for data clustering
    • Zhang H., Yu J., Wang M., Liu Y. Semi-supervised distance metric learning based on local linear regression for data clustering. Neurocomputing 2012, 93:100-105.
    • (2012) Neurocomputing , vol.93 , pp. 100-105
    • Zhang, H.1    Yu, J.2    Wang, M.3    Liu, Y.4
  • 14
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized non-negative matrix factorization for data representation
    • Cai D., He X., Han J., Huang T. Graph regularized non-negative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(8):1548-1560.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.4
  • 16
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely-Laplacian sparse coding for image classification
    • Proceedings of CVPR
    • S. Gao, I. Tsang, L. Chia, P. Zhao, Local features are not lonely-Laplacian sparse coding for image classification, in: Proceedings of CVPR, 2010, pp. 3555-3561.
    • (2010) , pp. 3555-3561
    • Gao, S.1    Tsang, I.2    Chia, L.3    Zhao, P.4
  • 17
    • 70450170579 scopus 로고    scopus 로고
    • Robust multi-class transductive learning with graphs
    • Proceedings of CVPR
    • W. Liu, S. Chang, Robust multi-class transductive learning with graphs, in: Proceedings of CVPR, 2009, pp. 381-388.
    • (2009) , pp. 381-388
    • Liu, W.1    Chang, S.2
  • 18
    • 77249095854 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • Proceedings of SDM
    • S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: Proceedings of SDM, 2009, pp. 792-801.
    • (2009) , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 21
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98(6):1031-1044.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 22
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • Proceedings of ICML
    • X. Zhou, J. Lafferty, Z. Ghahramani, Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of ICML, 2003, pp. 58-65.
    • (2003) , pp. 58-65
    • Zhou, X.1    Lafferty, J.2    Ghahramani, Z.3
  • 23
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Sindhwani V., Niyogi P. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Sindhwani, V.2    Niyogi, P.3
  • 24
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • Proceedings of ICML
    • J. Wang, T. Jebara, S. Chang, Graph transduction via alternating minimization, in: Proceedings of ICML, 2008, pp. 1144-1151.
    • (2008) , pp. 1144-1151
    • Wang, J.1    Jebara, T.2    Chang, S.3
  • 25
    • 84884202064 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey (Technical Report 1530), Computer Sciences, University of Wisconsin Madison
    • X. Zhu, Semi-Supervised Learning Literature Survey (Technical Report 1530), Computer Sciences, University of Wisconsin Madison, 2005.
    • (2005)
    • Zhu, X.1
  • 26
    • 85162350693 scopus 로고    scopus 로고
    • Linearized alternating direction method with adaptive penalty for low-rank representation
    • Lin Z., Liu R., Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation. Adv. Neural Inf. Process. Syst. 2011, 612-620.
    • (2011) Adv. Neural Inf. Process. Syst. , pp. 612-620
    • Lin, Z.1    Liu, R.2    Su, Z.3
  • 27
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk M., Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3(1):71-86.
    • (1991) J. Cogn. Neurosci. , vol.3 , Issue.1 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 28
    • 84863052482 scopus 로고    scopus 로고
    • Multi-task low-rank affinity pursuit for image segmentation
    • Proceedings of ICCV
    • B. Cheng, G. Liu, J. Wang, Z. Huang, S. Yan, Multi-task low-rank affinity pursuit for image segmentation, in: Proceedings of ICCV, 2011, pp. 2439-2446.
    • (2011) , pp. 2439-2446
    • Cheng, B.1    Liu, G.2    Wang, J.3    Huang, Z.4    Yan, S.5
  • 29
    • 84863124316 scopus 로고    scopus 로고
    • Saliency detection by multi-task sparsity pursuit
    • Lang C., Liu G., Yu J., Yan S. Saliency detection by multi-task sparsity pursuit. IEEE Trans. Image Process. 2012, 21(3):1327-1338.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.3 , pp. 1327-1338
    • Lang, C.1    Liu, G.2    Yu, J.3    Yan, S.4
  • 30
    • 84863042818 scopus 로고    scopus 로고
    • Latent low-rank representation for subspace segmentation and feature extraction
    • Proceedings of ICCV
    • G. Liu, S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, in: Proceedings of ICCV, 2011, pp. 1615-1622.
    • (2011) , pp. 1615-1622
    • Liu, G.1    Yan, S.2
  • 31
    • 80052892123 scopus 로고    scopus 로고
    • Accelerated low-rank visual recovery by random projection, in: Proceedings of CVPR
    • Y. Mu, J. Dong, X. Yuan, S. Yan, Accelerated low-rank visual recovery by random projection, in: Proceedings of CVPR, 2011, pp. 2609-2616.
    • (2011) , pp. 2609-2616
    • Mu, Y.1    Dong, J.2    Yuan, X.3    Yan, S.4
  • 32
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai J., Candés E., Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20(4):1956-1982.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candés, E.2    Shen, Z.3
  • 33
    • 77955690054 scopus 로고    scopus 로고
    • The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
    • UIUC Technical Report UILUENG-09-2215, arXiv: 1009. 5055
    • Z. Lin, M. Chen, L. Wu, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, 2009. UIUC Technical Report UILUENG-09-2215, arXiv: 1009. 5055.
    • (2009)
    • Lin, Z.1    Chen, M.2    Wu, L.3    Ma, Y.4
  • 34
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: illumination cone models for face recognition under variable lighting and pose
    • Georghiades A., Belhumeur P., Kriegman D. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23(6):643-660.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 35
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning
    • Proceedings of ICCV
    • D. Cai, X. He, J. Han, Spectral regression for efficient regularized subspace learning, in: Proceedings of ICCV, 2007, pp. 1-8.
    • (2007) , pp. 1-8
    • Cai, D.1    He, X.2    Han, J.3
  • 36
    • 0028734063 scopus 로고
    • Parameterisations of a stochastic model for human face identification
    • Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December
    • F. Samaria, A. Harter, Parameterisations of a stochastic model for human face identification, in: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994.
    • (1994)
    • Samaria, F.1    Harter, A.2
  • 37
    • 84884209661 scopus 로고    scopus 로고
    • The AR Face Database, CVC Tech. Report no. 24
    • A. Martinez, R. Benavente, The AR Face Database, CVC Tech. Report no. 24, 1998.
    • (1998)
    • Martinez, A.1    Benavente, R.2
  • 38
    • 49449098973 scopus 로고    scopus 로고
    • 1D correlation filter based class-dependence feature analysis for face recognition
    • Yan Y., Zhang Y. 1D correlation filter based class-dependence feature analysis for face recognition. Pattern Recognition 2008, 41(12):3834-3841.
    • (2008) Pattern Recognition , vol.41 , Issue.12 , pp. 3834-3841
    • Yan, Y.1    Zhang, Y.2
  • 39
    • 84866665730 scopus 로고    scopus 로고
    • RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images
    • Liu G., Lin Z., Yan S., Sun J., Yu Y., Ma Y. RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(11):2233-2246.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.11 , pp. 2233-2246
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 40
    • 78149478492 scopus 로고    scopus 로고
    • Local sparse representation based classification
    • Proceedings of ICPR
    • C. Li, J. Guo, H. Zhang, Local sparse representation based classification, in: Proceedings of ICPR, 2010, pp. 649-652.
    • (2010) , pp. 649-652
    • Li, C.1    Guo, J.2    Zhang, H.3
  • 41
    • 80052892989 scopus 로고    scopus 로고
    • Nonnegative sparse coding for discriminative semi-supervised learning
    • Proceedings of CVPR
    • R. He, W. Zheng, B. Hu, X. Kong, Nonnegative sparse coding for discriminative semi-supervised learning, in: Proceedings of CVPR, 2011, pp. 2849-2856.
    • (2011) , pp. 2849-2856
    • He, R.1    Zheng, W.2    Hu, B.3    Kong, X.4
  • 42
    • 80055001739 scopus 로고    scopus 로고
    • Graph optimization for dimensionality reduction with sparsity constraints
    • Zhang L., Chen S., Qiao L. Graph optimization for dimensionality reduction with sparsity constraints. Pattern Recognition 2012, 1205-1210.
    • (2012) Pattern Recognition , pp. 1205-1210
    • Zhang, L.1    Chen, S.2    Qiao, L.3
  • 43
    • 70350697580 scopus 로고    scopus 로고
    • Co-clustering on manifolds
    • Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
    • Q. Gu, J. Zhou, Co-clustering on manifolds, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2009, pp. 359-368.
    • (2009) , pp. 359-368
    • Gu, Q.1    Zhou, J.2
  • 44
    • 84866660023 scopus 로고    scopus 로고
    • Non-negative low rank and sparse graph for semi-supervised learning
    • Proceedings of CVPR
    • L. Zhuang, H. Gao, Z. Lin, Y. Ma, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning, in: Proceedings of CVPR, 2012, pp. 2328-2335.
    • (2012) , pp. 2328-2335
    • Zhuang, L.1    Gao, H.2    Lin, Z.3    Ma, Y.4    Yu, N.5
  • 45
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • Hull J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16(5):550-554.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell. , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.1
  • 46
    • 84884205839 scopus 로고    scopus 로고
    • A Counter Example for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, arXiv: 1304.6233
    • H. Zhang, Z. Lin, C. Zhang, A Counter Example for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank, arXiv: 1304.6233.
    • Zhang, H.1    Lin, Z.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.