메뉴 건너뛰기




Volumn 19, Issue 2, 2009, Pages 203-208

Gaussian proposal density using moment matching in SMC methods

Author keywords

Bayesian filtering; Importance sampling; Moment matching; Nonlinear dynamic system; Particle filtering; Sequential Monte Carlo methods

Indexed keywords


EID: 59849102627     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-008-9084-9     Document Type: Article
Times cited : (26)

References (17)
  • 1
    • 0043048581 scopus 로고
    • Construction of discrete-time nonlinear filter by Monte Carlo methods with variance-reducing techniques
    • 4. (In Japanese)
    • H. Akashi H. Kumamoto 1975 Construction of discrete-time nonlinear filter by Monte Carlo methods with variance-reducing techniques Syst. Control 19 4 211 221 (In Japanese)
    • (1975) Syst. Control , vol.19 , pp. 211-221
    • Akashi, H.1    Kumamoto, H.2
  • 3
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • 2
    • S. Arulampalam S. Maskell N. Gordon T. Clapp 2002 A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 2 174 188
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 6
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet S. Godsill C. Andrieu 2000 On sequential Monte Carlo sampling methods for Bayesian filtering Stat. Comput. 10 197 208
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 7
  • 8
    • 17444403965 scopus 로고    scopus 로고
    • New sequential Monte Carlo methods for nonlinear dynamic systems
    • 2
    • D. Guo X. Wang R. Chen 2005 New sequential Monte Carlo methods for nonlinear dynamic systems Stat. Comput. 15 2 135 147
    • (2005) Stat. Comput. , vol.15 , pp. 135-147
    • Guo, D.1    Wang, X.2    Chen, R.3
  • 9
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering
    • 5
    • J.E. Handschin D.Q. Mayne 1969 Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering Int. J. Control 9 5 547 559
    • (1969) Int. J. Control , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 10
    • 0034186948 scopus 로고    scopus 로고
    • Gaussian filters for nonlinear filtering problems
    • 5
    • K. Ito K. Xiong 2000 Gaussian filters for nonlinear filtering problems IEEE Trans. Automat. Contr. 45 5 910 927
    • (2000) IEEE Trans. Automat. Contr. , vol.45 , pp. 910-927
    • Ito, K.1    Xiong, K.2
  • 13
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • 400
    • G. Kitagawa 1987 Non-Gaussian state-space modeling of nonstationary time series J. Am. Stat. Assoc. 82 400 1032 1063
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 14
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • 446
    • M.K. Pitt N. Shephard 1999 Filtering via simulation: Auxiliary particle filters J. Am. Stat. Assoc. 94 446 590 599
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 17
    • 0000417862 scopus 로고
    • Mixture models, Monte Carlo, Bayesian updating and dynamic models
    • M. West 1993 Mixture models, Monte Carlo, Bayesian updating and dynamic models Comput. Sci. Stat. 24 325 333
    • (1993) Comput. Sci. Stat. , vol.24 , pp. 325-333
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.