-
1
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43:67-93.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
2
-
-
27644484061
-
Autophagy: molecular machinery for self-eating
-
Yorimitsu T., Klionsky D.J. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005, 12(Suppl. 2):1542-1552.
-
(2005)
Cell Death Differ.
, vol.12
, Issue.SUPPL. 2
, pp. 1542-1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
3
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T., et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007, 282:37298-37302.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37298-37302
-
-
Hanada, T.1
-
4
-
-
33244481532
-
Autophagy: a forty-year search for a missing membrane source
-
Juhasz G., Neufeld T.P. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 2006, 4:e36.
-
(2006)
PLoS Biol.
, vol.4
-
-
Juhasz, G.1
Neufeld, T.P.2
-
5
-
-
0025340880
-
Studies on the mechanisms of autophagy: maturation of the autophagic vacuole
-
Dunn W.A. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J. Cell Biol. 1990, 110:1935-1945.
-
(1990)
J. Cell Biol.
, vol.110
, pp. 1935-1945
-
-
Dunn, W.A.1
-
6
-
-
79951910694
-
Autophagy in immunity and cell-autonomous defense against intracellular microbes
-
Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 2011, 240:92-104.
-
(2011)
Immunol. Rev.
, vol.240
, pp. 92-104
-
-
Deretic, V.1
-
7
-
-
12944308330
-
Eating oneself and uninvited guests: autophagy-related pathways in cellular defense
-
Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005, 120:159-162.
-
(2005)
Cell
, vol.120
, pp. 159-162
-
-
Levine, B.1
-
8
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
Nakagawa I., et al. Autophagy defends cells against invading group A Streptococcus. Science 2004, 306:1037-1040.
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
-
9
-
-
77954590749
-
Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7
-
Sakurai A., et al. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J. Biol. Chem. 2010, 285:22666-22675.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22666-22675
-
-
Sakurai, A.1
-
10
-
-
73549102459
-
An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7
-
Yamaguchi H., et al. An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog. 2009, 5:e1000670.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Yamaguchi, H.1
-
11
-
-
33744958258
-
Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
-
Birmingham C.L., et al. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 2006, 281:11374-11383.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 11374-11383
-
-
Birmingham, C.L.1
-
12
-
-
33947416152
-
Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection
-
Py B.F., et al. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 2007, 3:117-125.
-
(2007)
Autophagy
, vol.3
, pp. 117-125
-
-
Py, B.F.1
-
13
-
-
0037711625
-
Cytoplasmic bacteria can be targets for autophagy
-
Rich K.A., et al. Cytoplasmic bacteria can be targets for autophagy. Cell. Microbiol. 2003, 5:455-468.
-
(2003)
Cell. Microbiol.
, vol.5
, pp. 455-468
-
-
Rich, K.A.1
-
14
-
-
33749264796
-
Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
-
Checroun C., et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14578-14583.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 14578-14583
-
-
Checroun, C.1
-
15
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez M.G., et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119:753-766.
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
-
16
-
-
84869217908
-
Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
-
Castillo E.F., et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E3168-E3176.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Castillo, E.F.1
-
17
-
-
84871006349
-
The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium
-
Huett A., et al. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 2012, 12:778-790.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 778-790
-
-
Huett, A.1
-
18
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
-
19
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjorkoy G., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 2005, 171:603-614.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 603-614
-
-
Bjorkoy, G.1
-
20
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
-
21
-
-
0037070216
-
Structure and functional properties of the ubiquitin binding protein p62
-
Geetha T., Wooten M.W. Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett. 2002, 512:19-24.
-
(2002)
FEBS Lett.
, vol.512
, pp. 19-24
-
-
Geetha, T.1
Wooten, M.W.2
-
22
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 2009, 11:1233-1240.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
-
23
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183:5909-5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
-
24
-
-
0023898917
-
Role of hemolysin for the intracellular growth of Listeria monocytogenes
-
Portnoy D.A., et al. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 1988, 167:1459-1471.
-
(1988)
J. Exp. Med.
, vol.167
, pp. 1459-1471
-
-
Portnoy, D.A.1
-
25
-
-
80053951342
-
Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton
-
Haglund C.M., Welch M.D. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J. Cell Biol. 2011, 195:7-17.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 7-17
-
-
Haglund, C.M.1
Welch, M.D.2
-
26
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
-
27
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
28
-
-
79952348751
-
The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
-
Cemma M., et al. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 2011, 7:341-345.
-
(2011)
Autophagy
, vol.7
, pp. 341-345
-
-
Cemma, M.1
-
29
-
-
84869080400
-
LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
-
von Muhlinen N., et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 2012, 48:329-342.
-
(2012)
Mol. Cell
, vol.48
, pp. 329-342
-
-
von Muhlinen, N.1
-
30
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 2005, 307:727-731.
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
-
31
-
-
79956147302
-
A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens
-
Ogawa M., et al. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 2011, 9:376-389.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 376-389
-
-
Ogawa, M.1
-
32
-
-
78349239252
-
Entrapment of intracytosolic bacteria by septin cage-like structures
-
Mostowy S., et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010, 8:433-444.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 433-444
-
-
Mostowy, S.1
-
33
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
Sanjuan M.A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007, 450:1253-1257.
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
-
34
-
-
79956303498
-
Regulation of the antimicrobial response by NLR proteins
-
Elinav E., et al. Regulation of the antimicrobial response by NLR proteins. Immunity 2011, 34:665-679.
-
(2011)
Immunity
, vol.34
, pp. 665-679
-
-
Elinav, E.1
-
35
-
-
84865294366
-
Nod-like receptors in the control of intestinal inflammation
-
Rubino S.J., et al. Nod-like receptors in the control of intestinal inflammation. Curr. Opin. Immunol. 2012, 24:398-404.
-
(2012)
Curr. Opin. Immunol.
, vol.24
, pp. 398-404
-
-
Rubino, S.J.1
-
36
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
Travassos L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11:55-62.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 55-62
-
-
Travassos, L.H.1
-
37
-
-
73849151394
-
NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
-
Cooney R., et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16:90-97.
-
(2010)
Nat. Med.
, vol.16
, pp. 90-97
-
-
Cooney, R.1
-
38
-
-
84865693202
-
Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses
-
Dong N., et al. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 2012, 150:1029-1041.
-
(2012)
Cell
, vol.150
, pp. 1029-1041
-
-
Dong, N.1
-
39
-
-
77955239270
-
Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites
-
Zoppino F.C., et al. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010, 11:1246-1261.
-
(2010)
Traffic
, vol.11
, pp. 1246-1261
-
-
Zoppino, F.C.1
-
40
-
-
80052337539
-
Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy
-
Dortet L., et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 2011, 7:e1002168.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Dortet, L.1
-
41
-
-
84869886358
-
The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation
-
Choy A., et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012, 338:1072-1076.
-
(2012)
Science
, vol.338
, pp. 1072-1076
-
-
Choy, A.1
-
42
-
-
0030043391
-
Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis
-
Heinzen R.A., et al. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 1996, 64:796-809.
-
(1996)
Infect. Immun.
, vol.64
, pp. 796-809
-
-
Heinzen, R.A.1
-
43
-
-
0036784707
-
Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics
-
Beron W., et al. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 2002, 70:5816-5821.
-
(2002)
Infect. Immun.
, vol.70
, pp. 5816-5821
-
-
Beron, W.1
-
44
-
-
21344472825
-
Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
-
Gutierrez M.G., et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 2005, 7:981-993.
-
(2005)
Cell. Microbiol.
, vol.7
, pp. 981-993
-
-
Gutierrez, M.G.1
-
45
-
-
33947167752
-
The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell
-
Romano P.S., et al. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 2007, 9:891-909.
-
(2007)
Cell. Microbiol.
, vol.9
, pp. 891-909
-
-
Romano, P.S.1
-
46
-
-
80052630257
-
Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages
-
e00175-00111
-
Beare P.A., et al. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2011, 2. e00175-00111.
-
(2011)
MBio
, vol.2
-
-
Beare, P.A.1
-
47
-
-
79958021807
-
The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication
-
Carey K.L., et al. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 2011, 7:e1002056.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Carey, K.L.1
-
48
-
-
41849115282
-
Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment
-
Starr T., et al. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 2008, 9:678-694.
-
(2008)
Traffic
, vol.9
, pp. 678-694
-
-
Starr, T.1
-
49
-
-
0037022336
-
The Brucella suis virB operon is induced intracellularly in macrophages
-
Boschiroli M.L., et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:1544-1549.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 1544-1549
-
-
Boschiroli, M.L.1
-
50
-
-
84856010816
-
Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
-
Starr T., et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012, 11:33-45.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 33-45
-
-
Starr, T.1
-
51
-
-
84867250039
-
Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1
-
Campbell G.R., Spector S.A. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 2012, 8:1523-1525.
-
(2012)
Autophagy
, vol.8
, pp. 1523-1525
-
-
Campbell, G.R.1
Spector, S.A.2
-
52
-
-
84873709314
-
Identification of a candidate therapeutic autophagy-inducing peptide
-
Shoji-Kawata S., et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013, 494:201-206.
-
(2013)
Nature
, vol.494
, pp. 201-206
-
-
Shoji-Kawata, S.1
-
53
-
-
75649145030
-
Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy
-
Deretic V., et al. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr. Top. Microbiol. Immunol. 2009, 335:169-188.
-
(2009)
Curr. Top. Microbiol. Immunol.
, vol.335
, pp. 169-188
-
-
Deretic, V.1
-
54
-
-
41949101594
-
Toll-like receptors control autophagy
-
Delgado M.A., et al. Toll-like receptors control autophagy. EMBO J. 2008, 27:1110-1121.
-
(2008)
EMBO J.
, vol.27
, pp. 1110-1121
-
-
Delgado, M.A.1
-
55
-
-
34447643958
-
Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
-
Xu Y., et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007, 27:135-144.
-
(2007)
Immunity
, vol.27
, pp. 135-144
-
-
Xu, Y.1
|