메뉴 건너뛰기




Volumn 13, Issue 6, 2012, Pages 403-412

Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks

Author keywords

Industrial winding process; Local linear model tree (LOLIMOT); Neural network (NN); Non linear system identification; Recurrent local linear neuro fuzzy (RLLNF) network

Indexed keywords

CONTROL PERFORMANCE; FAULT-TOLERANT SYSTEMS; LEAST SQUARE ERRORS; LOCAL LINEAR; LOCAL LINEAR MODEL TREE; MODELLING METHOD; MULTI LAYER PERCEPTRON; NEURO-FUZZY; NEURO-FUZZY NETWORK; NON-LINEAR MODEL; NON-LINEAR MODELLING; NON-LINEAR SYSTEM IDENTIFICATION; NONLINEAR IDENTIFICATIONS; RADIAL BASIS FUNCTIONS; SIMULATOR MODELS; TREE-BASED; WINDING PROCESS;

EID: 84864632694     PISSN: 18691951     EISSN: 1869196X     Source Type: Journal    
DOI: 10.1631/jzus.C11a0278     Document Type: Article
Times cited : (15)

References (19)
  • 1
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • doi:10.1016/S1367-5788(03)00009-9
    • Babuska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control, 27(1): 73-85. doi:10.1016/S1367- 5788(03)00009-9
    • (2003) Ann. Rev. Control , vol.27 , Issue.1 , pp. 73-85
    • Babuska, R.1    Verbruggen, H.2
  • 2
    • 85079333355 scopus 로고    scopus 로고
    • Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network
    • Banadaki, H.D., Nozari, H.A., Kakahaji, H., 2011. Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network. Int. J. Control Autom., 4(4):123-134.
    • (2011) Int. J. Control Autom. , vol.4 , Issue.4 , pp. 123-134
    • Banadaki, H.D.1    Nozari, H.A.2    Kakahaji, H.3
  • 3
    • 0032155089 scopus 로고    scopus 로고
    • Multivariable identification of a winding process by subspace methods for tension control
    • Bastogne, T., Noura, H., Sibille, P., Richard, A., 1998. Multivariable identification of a winding process by subspace methods for tension control. Control Eng. Pract., 6(9): 1077-1088.
    • (1998) Control Eng. Pract. , vol.6 , Issue.9 , pp. 1077-1088
    • Bastogne, T.1    Noura, H.2    Sibille, P.3    Richard, A.4
  • 5
    • 0027624709 scopus 로고
    • Tension control: Dancer rolls or load cells
    • doi:10.1109/28.231986
    • Ebler, N.A., Arnason, R., Michaelis, G., D'Sa, N., 1993. Tension control: dancer rolls or load cells. IEEE Trans. Ind. Appl., 29(4):727-739. doi:10.1109/28.231986
    • (1993) IEEE Trans. Ind. Appl. , vol.29 , Issue.4 , pp. 727-739
    • Ebler, N.A.1    Arnason, R.2    Michaelis, G.3    D'Sa, N.4
  • 6
    • 0001460461 scopus 로고
    • Observer-based multivariable control of the aluminum cold tandem mill
    • doi:10.1016/0005-1098(88)90050-7
    • Hoshino, I., Maekawa, Y., Fujimoto, T., Kimura, H., Kimura, H., 1988. Observer-based multivariable control of the aluminum cold tandem mill. Automatica, 24(6):741-754. doi:10.1016/0005-1098(88)90050-7
    • (1988) Automatica , vol.24 , Issue.6 , pp. 741-754
    • Hoshino, I.1    Maekawa, Y.2    Fujimoto, T.3    Kimura, H.4    Kimura, H.5
  • 10
    • 84902179039 scopus 로고    scopus 로고
    • Local linear model tree for on-line identification of time variant non-linear dynamic systems
    • Nelles, O., 1996. Local Linear Model Tree for On-line Identification of Time Variant Non-linear Dynamic Systems. Int. Conf. on Artificial Neural Networks, p.115-120.
    • (1996) Int. Conf. on Artificial Neural Networks , pp. 115-120
    • Nelles, O.1
  • 12
    • 0030419746 scopus 로고    scopus 로고
    • Basis function networks for interpolation of local linear models
    • Nelles, O., Isermann, R., 1996. Basis Function Networks for Interpolation of Local Linear Models. IEEE Conf. on Decision and Control, p.470-475.
    • (1996) IEEE Conf. on Decision and Control , pp. 470-475
    • Nelles, O.1    Isermann, R.2
  • 15
    • 0011492142 scopus 로고
    • Modeling of web tension in a continuous annealing line
    • Parant, F., Coeffier, C., Iung, C., 1992. Modeling of web tension in a continuous annealing line. Iron Steel Eng., p.46-49.
    • (1992) Iron Steel Eng. , pp. 46-49
    • Parant, F.1    Coeffier, C.2    Iung, C.3
  • 16
    • 78249264505 scopus 로고    scopus 로고
    • Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks
    • doi:10.1016/j.neucom.2009.04.004
    • Razavi-Far, R., Davilu, H., Palade, V., Lucas, C., 2009. Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing, 7(13-15):2939-2951. doi:10.1016/j.neucom.2009.04.004
    • (2009) Neurocomputing , vol.7 , Issue.13-15 , pp. 2939-2951
    • Razavi-Far, R.1    Davilu, H.2    Palade, V.3    Lucas, C.4
  • 17
    • 79951721961 scopus 로고    scopus 로고
    • Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique
    • doi:10.1016/j.jprocont.2010.10.009
    • Sadeghian, M., Fatehi, A., 2011. Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique. J. Process Control, 21(2):302-308. doi:10.1016/j.jprocont.2010.10.009
    • (2011) J. Process Control , vol.21 , Issue.2 , pp. 302-308
    • Sadeghian, M.1    Fatehi, A.2
  • 18
    • 0024029929 scopus 로고
    • Modeling of web conveyance systems for multivariable control
    • doi:10.1109/9. 1247
    • Sievers, L., Balas, M.J., von Flotow, A., 1988. Modeling of web conveyance systems for multivariable control. IEEE Trans. Autom. Control, 33(6):524-531. doi:10.1109/9. 1247
    • (1988) IEEE Trans. Autom. Control , vol.33 , Issue.6 , pp. 524-531
    • Sievers, L.1    Balas, M.J.2    Von Flotow, A.3
  • 19
    • 0038927293 scopus 로고    scopus 로고
    • Available from, Accessed on Mar. 24, 2011
    • SISTA, 1999. DaISy: Database for the Identification of Systems. Available from http://homes.esat.kuleuven.be/-smc/daisy/ Accessed on Mar. 24, 2011.
    • (1999) DaISy: Database for the Identification of Systems


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.