메뉴 건너뛰기




Volumn 20, Issue 1, 2014, Pages

Analytical time-domain models for performance optimization of multilayer GNR interconnects

Author keywords

Delay; Energy; Graphene nanoribbons; High speed interconnects; Optical interconnects

Indexed keywords

DELAY; ENERGY; EXHAUSTIVE SIMULATION; GRAPHENE NANORIBBONS; HIGH-SPEED INTERCONNECTS; INTERCONNECT TECHNOLOGY; MULTILAYER GRAPHENE; PERFORMANCE OPTIMIZATIONS;

EID: 84883748225     PISSN: 1077260X     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTQE.2013.2272458     Document Type: Article
Times cited : (82)

References (31)
  • 2
    • 33847690144 scopus 로고    scopus 로고
    • The rise of graphene
    • DOI 10.1038/nmat1849, PII NMAT1849
    • A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Mater., vol. 6, pp. 183-191, 2007. (Pubitemid 46353764)
    • (2007) Nature Materials , vol.6 , Issue.3 , pp. 183-191
    • Geim, A.K.1    Novoselov, K.S.2
  • 3
    • 77954846222 scopus 로고    scopus 로고
    • Carbon nanomaterials: The ideal interconnect technology for next-generation ics
    • Jul./Aug
    • H. Li, C. Xu, and K. Banerjee, "Carbon nanomaterials: The ideal interconnect technology for next-generation ICs," IEEE Design Test Comput., vol. 27, pp. 20-31, Jul./Aug. 2010.
    • (2010) IEEE Design Test Comput. , vol.27 , pp. 20-31
    • Li, H.1    Xu, C.2    Banerjee, K.3
  • 4
    • 34948858511 scopus 로고    scopus 로고
    • Carbon-based electronics
    • DOI 10.1038/nnano.2007.300, PII NNANO2007300
    • P. Avouris, Z. Chen, and V. Perebeinos, "Carbon-based electronics," Nature Nanotechnol., vol. 2, pp. 605-615, Sep. 2007. (Pubitemid 47525190)
    • (2007) Nature Nanotechnology , vol.2 , Issue.10 , pp. 605-615
    • Avouris, P.1    Chen, Z.2    Perebeinos, V.3
  • 5
    • 69549088334 scopus 로고    scopus 로고
    • Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects
    • Sep
    • H. Li, C. Xu, and K. Banerjee, "Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects," IEEE Trans. Electron. Devices, vol. 56, no. 9, pp. 1799-1821, Sep. 2009.
    • (2009) IEEE Trans. Electron. Devices , vol.56 , Issue.9 , pp. 1799-1821
    • Li, H.1    Xu, C.2    Banerjee, K.3
  • 6
    • 84883768569 scopus 로고    scopus 로고
    • Int. Technol. Roadmap Semicond., 2011. Available: http://www.itrs.net/
    • (2011)
  • 7
    • 49449091072 scopus 로고    scopus 로고
    • Approaching ballistic transport in suspended graphene
    • Jul
    • X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nature Nanotechnol., vol. 3, pp. 491-495, Jul. 2008.
    • (2008) Nature Nanotechnol. , vol.3 , pp. 491-495
    • Du, X.1    Skachko, I.2    Barker, A.3    Andrei, E.Y.4
  • 9
    • 69549118314 scopus 로고    scopus 로고
    • Compact physics-based circuit models for graphene nanoribbon interconnects
    • Sep
    • A. Naeemi and J. D. Meindl, "Compact physics-based circuit models for graphene nanoribbon interconnects," IEEE Trans. Electron. Devices, vol. 56, no. 9, pp. 1822-1833, Sep. 2009.
    • (2009) IEEE Trans. Electron. Devices , vol.56 , Issue.9 , pp. 1822-1833
    • Naeemi, A.1    Meindl, J.D.2
  • 10
    • 52349104886 scopus 로고    scopus 로고
    • Crystallographic etching of few-layer graphene
    • Jun
    • S. S. Dutta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, "Crystallographic etching of few-layer graphene," Nano Lett., vol. 8, pp. 1912-1915, Jun. 2008.
    • (2008) Nano Lett. , vol.8 , pp. 1912-1915
    • Dutta, S.S.1    Strachan, D.R.2    Khamis, S.M.3    Johnson, A.T.C.4
  • 11
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Phys. Rev. Lett., vol. 98, pp. 206805-1-206805-4, 2007.
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 2068051-2068054
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 14
    • 34247647567 scopus 로고    scopus 로고
    • Conductance modeling for graphene nanoribbon (GNR) interconnects
    • DOI 10.1109/LED.2007.895452
    • A. Naeemi and J. D. Meindl, "Conductance modeling for graphene nanoribbon (GNR) interconnects," IEEE Electron. Device Lett., vol. 28, no. 5, pp. 428-431, May 2007. (Pubitemid 46671077)
    • (2007) IEEE Electron Device Letters , vol.28 , Issue.5 , pp. 428-431
    • Naeemi, A.1    Meindl, J.D.2
  • 15
    • 67649217765 scopus 로고    scopus 로고
    • Resistivity of graphene nanoribbon interconnects
    • Jun
    • R. Murali, Y. Yang, T. Beck, and J. D. Meindl, "Resistivity of graphene nanoribbon interconnects," IEEE Electron. Device Lett., vol. 30, no. 6, pp. 611-613, Jun. 2009.
    • (2009) IEEE Electron. Device Lett. , vol.30 , Issue.6 , pp. 611-613
    • Murali, R.1    Yang, Y.2    Beck, T.3    Meindl, J.D.4
  • 16
    • 84870723082 scopus 로고    scopus 로고
    • Analytical models for the frequency response of multi-layer graphene nanoribbon interconnects
    • V. Kumar and A. Naeemi, "Analytical models for the frequency response of multi-layer graphene nanoribbon interconnects," in Proc. IEEE Symp. Electromagn. Compat., 2012, pp. 440-445.
    • (2012) Proc. IEEE Symp. Electromagn. Compat. , pp. 440-445
    • Kumar, V.1    Naeemi, A.2
  • 17
    • 80052061514 scopus 로고    scopus 로고
    • Modeling and optimization for multi-layer graphene nanoribbon conductors
    • V. Kumar, S. Rakheja, and A. Naeemi, "Modeling and optimization for multi-layer graphene nanoribbon conductors," in Proc. IEEE Interconnect Technol. Conf., 2011, pp. 1-3.
    • (2011) Proc. IEEE Interconnect Technol. Conf. , pp. 1-3
    • Kumar, V.1    Rakheja, S.2    Naeemi, A.3
  • 18
    • 84866741770 scopus 로고    scopus 로고
    • Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors
    • Oct
    • V. Kumar, S. Rakheja, and A. Naeemi, "Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors," IEEE Trans. Electron. Devices, vol. 59, no. 10, pp. 2753-2761, Oct. 2012.
    • (2012) IEEE Trans. Electron. Devices , vol.59 , Issue.10 , pp. 2753-2761
    • Kumar, V.1    Rakheja, S.2    Naeemi, A.3
  • 20
    • 43549122599 scopus 로고    scopus 로고
    • Electron transport modeling for junctions of zigzag and armchair graphene nanoribbons (GNRs)
    • DOI 10.1109/LED.2008.920278
    • A. Naeemi and J. D. Meindl, "Electron transport modeling for junctions of zigzag and armchair graphene nanoribbons (GNRs)," IEEE Electron. Device Lett., vol. 29, no. 5, pp. 497-499, May 2008. (Pubitemid 351676320)
    • (2008) IEEE Electron Device Letters , vol.29 , Issue.5 , pp. 497-499
    • Naeemi, A.1    Meindl, J.D.2
  • 22
    • 44149119344 scopus 로고    scopus 로고
    • Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon filedeffect transistors
    • X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, "Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon filedeffect transistors," Phys. Rev. Lett., vol. 100, pp. 206803-1-206803-4, 2008.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 2068031-2068034
    • Wang, X.1    Ouyang, Y.2    Li, X.3    Wang, H.4    Guo, J.5    Dai, H.6
  • 23
    • 78649451729 scopus 로고    scopus 로고
    • Stability analysis in graphene nanoribbon interconnects
    • Dec
    • S. H. Nasiri,M. K. M. Farshi, and R. Faez, "Stability analysis in graphene nanoribbon interconnects," IEEE Electron. Device Lett., vol. 31, no. 12, pp. 1458-1460, Dec. 2010.
    • (2010) IEEE Electron. Device Lett. , vol.31 , Issue.12 , pp. 1458-1460
    • Nasiri, S.H.1    Farshi, M.K.M.2    Faez, R.3
  • 24
    • 84555186898 scopus 로고    scopus 로고
    • Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures
    • S. H. Nasiri,R. Faez, andM. K. M. Farshi, "Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures," Modern Phys. Lett. B, vol. 26, no. 1, pp. 1150004-1-1150004-5, 2012.
    • (2012) Modern Phys. Lett. B , vol.26 , Issue.1 , pp. 11500041-11500045
    • Nasiri, S.H.1    Faez, R.2    Farshi, M.K.M.3
  • 25
    • 0033896611 scopus 로고    scopus 로고
    • New formulas of interconnect capacitances based on results of conformal mapping method
    • DOI 10.1109/16.817589
    • F. Stellari and A. L. Lacatia, "New formulas of interconnect capacitances based on results of conformal mapping method," IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 222-231, Jan. 2000. (Pubitemid 30565142)
    • (2000) IEEE Transactions on Electron Devices , vol.47 , Issue.1 , pp. 222-231
    • Stellari Franco1    Lacaita Andrea, L.2
  • 26
    • 0037098476 scopus 로고    scopus 로고
    • Field-induced metal-insulator transition in the c-axis resistivity of graphite
    • H. Kempa and P. Esquinazi, "Field-induced metal-insulator transition in the c-axis resistivity of graphite," Phys. Rev. B, vol. 65, pp. 241101-1-241101-4, 2002.
    • (2002) Phys. Rev. B , vol.65 , pp. 2411011-2411014
    • Kempa, H.1    Esquinazi, P.2
  • 27
    • 0000215375 scopus 로고
    • Pressure dependence of the c-axis resistivity of graphite
    • C. Uher, R. L. Hockey, and E. B. Jacob, "Pressure dependence of the c-axis resistivity of graphite," Phys. Rev. B, vol. 35, no. 9, pp. 4483-4488, 1987.
    • (1987) Phys. Rev. B , vol.35 , Issue.9 , pp. 4483-4488
    • Uher, C.1    Hockey, R.L.2    Jacob, E.B.3
  • 29
    • 84881620693 scopus 로고    scopus 로고
    • Superconductivity in the intercalated graphite compounds c6yb and c6 ca
    • T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, "Superconductivity in the intercalated graphite compounds C6Yb and C6 Ca," Nature Phys., vol. 1, pp. 39-41, 2005.
    • (2005) Nature Phys. , vol.1 , pp. 39-41
    • Weller, T.E.1    Ellerby, M.2    Saxena, S.S.3    Smith, R.P.4    Skipper, N.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.