메뉴 건너뛰기




Volumn 27, Issue 5, 2008, Pages 629-640

Efficient multilevel brain tumor segmentation with integrated bayesian model classification

Author keywords

Bayesian affinity; Brain tumor; Glioblastoma multiforme; Multilevel segmentation; Normalized cuts

Indexed keywords

BAYESIAN NETWORKS; BRAIN; COMPUTATIONAL EFFICIENCY; IMAGE SEGMENTATION; MAGNETIC RESONANCE; MATHEMATICAL MODELS;

EID: 43049179622     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMI.2007.912817     Document Type: Article
Times cited : (390)

References (39)
  • 1
    • 0032701497 scopus 로고    scopus 로고
    • The new WHO classification of brain tumors
    • Nov
    • J. G. Smirniotopoulos, "The new WHO classification of brain tumors," Neuroimag. Clinics North Amer., vol. 9, no. 4, pp. 595-613, Nov. 1999.
    • (1999) Neuroimag. Clinics North Amer , vol.9 , Issue.4 , pp. 595-613
    • Smirniotopoulos, J.G.1
  • 2
    • 16544382067 scopus 로고    scopus 로고
    • Diagnosis and staging of brain tumors
    • M. R. Patel and V. Tse, "Diagnosis and staging of brain tumors." Seminars Roentgenol., vol. 39, no. 3, pp. 347-360, 2004.
    • (2004) Seminars Roentgenol , vol.39 , Issue.3 , pp. 347-360
    • Patel, M.R.1    Tse, V.2
  • 3
    • 13844281110 scopus 로고    scopus 로고
    • A system for brain tumor volume estimation via MR imaging and fuzzy connectedness
    • J. Liu, J. K. Udupa, D. Odhner, D. Hackney, and G. Moonis, "A system for brain tumor volume estimation via MR imaging and fuzzy connectedness," Comput. Med. Imag. Graphics, vol. 29, no. 1, pp. 21-34, 2005.
    • (2005) Comput. Med. Imag. Graphics , vol.29 , Issue.1 , pp. 21-34
    • Liu, J.1    Udupa, J.K.2    Odhner, D.3    Hackney, D.4    Moonis, G.5
  • 4
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • Sep
    • M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, "A brain tumor segmentation framework based on outlier detection," Med. Image Anal. J., vol. 8, no. 3. pp. 275-283, Sep. 2004.
    • (2004) Med. Image Anal. J , vol.8 , Issue.3 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 5
    • 0028923807 scopus 로고
    • Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme
    • W. E. Phillips, R. P. Velthuizen, S. Phupanich. L. O. Hall. L. P. Clarke, and M. L. Silbiger, "Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme," Magn. Reson. Imag., vol. 13, no. 2, pp. 277-290, 1995.
    • (1995) Magn. Reson. Imag , vol.13 , Issue.2 , pp. 277-290
    • Phillips, W.E.1    Velthuizen, R.P.2    Phupanich, S.3    Hall, L.O.4    Clarke, L.P.5    Silbiger, M.L.6
  • 7
    • 0035185610 scopus 로고    scopus 로고
    • L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. Reed Murtagh, Automatic segmentation of nonenhancing brain tumors in magnetic resonance images, Artif. Intel!. Med., 21, pp. 43-63, 2001.
    • L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. Reed Murtagh, "Automatic segmentation of nonenhancing brain tumors in magnetic resonance images," Artif. Intel!. Med., vol. 21, pp. 43-63, 2001.
  • 8
    • 0032587462 scopus 로고    scopus 로고
    • Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization
    • Feb
    • N. B. Karayiannis and P.-I. Pai, "Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization," IEEE Trans. Med. Imag., vol. 18, no. 2, pp. 172-180, Feb. 1999.
    • (1999) IEEE Trans. Med. Imag , vol.18 , Issue.2 , pp. 172-180
    • Karayiannis, N.B.1    Pai, P.-I.2
  • 9
    • 0347252327 scopus 로고    scopus 로고
    • Automatic brain tumor segmentation by subject specific modification of atlas priors
    • Dec
    • M. Prastawa, E. Bullitt, N. Bullitt, K. V. Leemput, and G. Gerig, "Automatic brain tumor segmentation by subject specific modification of atlas priors," Acad. Radiol., vol. 10, pp. 1341-1348, Dec. 2003.
    • (2003) Acad. Radiol , vol.10 , pp. 1341-1348
    • Prastawa, M.1    Bullitt, E.2    Bullitt, N.3    Leemput, K.V.4    Gerig, G.5
  • 12
    • 0032995381 scopus 로고    scopus 로고
    • Fast tissue segmentation based on a 4D feature map in characterization of intracranial lesions
    • S. Vinitski, C. F. Gonzalez, R. Knobler, D. Andrews, T. Iwanaga, and M. Curtis, "Fast tissue segmentation based on a 4D feature map in characterization of intracranial lesions," J. Magn, Reson. Imag., vol. 9, no. 6, pp. 768-776, 1999.
    • (1999) J. Magn, Reson. Imag , vol.9 , Issue.6 , pp. 768-776
    • Vinitski, S.1    Gonzalez, C.F.2    Knobler, R.3    Andrews, D.4    Iwanaga, T.5    Curtis, M.6
  • 13
    • 33751563521 scopus 로고    scopus 로고
    • Level set evolution with region competition: Automatic 3-D segmentation of brain tumors
    • S. Ho, E. Bullitt, and G. Gerig, "Level set evolution with region competition: Automatic 3-D segmentation of brain tumors." in Proc. Int. Conf. Pattern Recognit., 2002, vol. I, pp. 532-535.
    • (2002) Proc. Int. Conf. Pattern Recognit , vol.1 , pp. 532-535
    • Ho, S.1    Bullitt, E.2    Gerig, G.3
  • 15
    • 0030472879 scopus 로고    scopus 로고
    • Cerebral tumor volume calculations using planimetric and eigenimage analysis
    • D. J. Peck, J. P. Windham, L. L. Emery, H. Soltanian-Zadeh. D. O. Hearshen, and T. Mikkelsen, "Cerebral tumor volume calculations using planimetric and eigenimage analysis." Med. Phys., vol. 23, no. 12, pp. 2035-2042, 1996.
    • (1996) Med. Phys , vol.23 , Issue.12 , pp. 2035-2042
    • Peck, D.J.1    Windham, J.P.2    Emery, L.L.3    Soltanian-Zadeh, H.4    Hearshen, D.O.5    Mikkelsen, T.6
  • 16
    • 0031060807 scopus 로고    scopus 로고
    • Computerized tumor boundary detection using a hopfield neural network
    • Feb
    • Y. Zhu and H. Yan, "Computerized tumor boundary detection using a hopfield neural network," IEEE Trans. Med. Imag., vol. 16, no. 1, pp. 55-67, Feb. 1997.
    • (1997) IEEE Trans. Med. Imag , vol.16 , Issue.1 , pp. 55-67
    • Zhu, Y.1    Yan, H.2
  • 17
    • 24944435111 scopus 로고    scopus 로고
    • Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
    • Chengdu, China
    • J. Zhang, K. Ma. M. H. Er, and V. Chong, "Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine," in Proc. 2004 Int. Conf. Intell. Mechatmnics Automation. Chengdu, China, 2004, pp. 207-211.
    • (2004) Proc. 2004 Int. Conf. Intell. Mechatmnics Automation , pp. 207-211
    • Zhang, J.1    Er, K.M.M.H.2    Chong, V.3
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist., Ser. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Statist., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 19
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. Mach. Learn , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 20
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," Int. J. Comput. Vis., vol. 68, no. 2, pp. 179-201, 2006.
    • (2006) Int. J. Comput. Vis , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 21
  • 22
    • 33750262367 scopus 로고    scopus 로고
    • Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation
    • J. J. Corso, E. Sharon, and A. Yuille, "Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation," Med. Image Comput. Comput. Assisted Intervention, vol. 2, pp. 790-798, 2006.
    • (2006) Med. Image Comput. Comput. Assisted Intervention , vol.2 , pp. 790-798
    • Corso, J.J.1    Sharon, E.2    Yuille, A.3
  • 23
    • 0036566199 scopus 로고    scopus 로고
    • Image segmentation by data-driven markov chain monte carlo
    • May
    • Z. Tu and S. C. Zhu, "Image segmentation by data-driven markov chain monte carlo." IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 657-673, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.5 , pp. 657-673
    • Tu, Z.1    Zhu, S.C.2
  • 24
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection and recognition
    • Z. Tu, X. R. Chen, A. L. Yuille, and S. C. Zhu, "Image parsing: Unifying segmentation, detection and recognition." Int. J. Comput. Vis., vol. 63, no. 2, pp. 113-140, 2005.
    • (2005) Int. J. Comput. Vis , vol.63 , Issue.2 , pp. 113-140
    • Tu, Z.1    Chen, X.R.2    Yuille, A.L.3    Zhu, S.C.4
  • 25
    • 24344434731 scopus 로고    scopus 로고
    • Generalizing swendsen-wang to sampling arbitrary posterior probabilities
    • Aug
    • A. Barbu and S.-C. Zhu, "Generalizing swendsen-wang to sampling arbitrary posterior probabilities," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1239-1253, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1239-1253
    • Barbu, A.1    Zhu, S.-C.2
  • 26
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intel.l, vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intel.l , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 27
    • 0033285447 scopus 로고    scopus 로고
    • Segmentation using eigenvectors: A unifying view
    • Sep
    • Y. Weiss, "Segmentation using eigenvectors: A unifying view," in IEEE Int. Conf. Comput. Vis., Sep. 1999, vol. 2, pp. 975-982.
    • (1999) IEEE Int. Conf. Comput. Vis , vol.2 , pp. 975-982
    • Weiss, Y.1
  • 28
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, 2004.
    • (2004) Int. J. Comput. Vis , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 29
    • 33747472134 scopus 로고    scopus 로고
    • Hierarchy and adaptivity in segmenting visual scenes
    • E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, "Hierarchy and adaptivity in segmenting visual scenes." Nature, vol. 442, no. 7104, pp. 810-813, 2006.
    • (2006) Nature , vol.442 , Issue.7104 , pp. 810-813
    • Sharon, E.1    Galun, M.2    Sharon, D.3    Basri, R.4    Brandt, A.5
  • 31
    • 0035686651 scopus 로고    scopus 로고
    • Segmentation and boundary detection using multiscale intensity measurements
    • E. Sharon, A. Brandt, and R. Basri, "Segmentation and boundary detection using multiscale intensity measurements," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2001, vol. I, pp. 469-476.
    • (2001) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , vol.1 , pp. 469-476
    • Sharon, E.1    Brandt, A.2    Basri, R.3
  • 34
    • 0038381649 scopus 로고    scopus 로고
    • Statistical modeling and conceptualization of visual patterns
    • Jun
    • S. C. Zhu, "Statistical modeling and conceptualization of visual patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 691-712, Jun. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , Issue.6 , pp. 691-712
    • Zhu, S.C.1
  • 35
    • 0032025550 scopus 로고    scopus 로고
    • FRAME: Filters, random field and maximum entropy :—towards a unified theory for texture modeling
    • S. C. Zhu, Y. N. Wu, and D. Mumford, "FRAME: Filters, random field and maximum entropy :—towards a unified theory for texture modeling," Int. J. Comput. Vis., vol. 27, no. 2, pp. 1-20, 1998.
    • (1998) Int. J. Comput. Vis , vol.27 , Issue.2 , pp. 1-20
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 36
    • 33745829268 scopus 로고    scopus 로고
    • Bottom-up/top-down image parsing by attribute graph grammar
    • F. Han and S. C. Zhu, "Bottom-up/top-down image parsing by attribute graph grammar," in Proc. Int. Conf. Comput. Vis., 2005, vol. 2, pp. 1778-1785.
    • (2005) Proc. Int. Conf. Comput. Vis , vol.2 , pp. 1778-1785
    • Han, F.1    Zhu, S.C.2
  • 37
    • 0041941135 scopus 로고    scopus 로고
    • Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches
    • C. Fowlkes, D. Martin, and J. Malik, "Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches," in IEEE Conf. Comput. Vis. Pattern Recognit., 2003, vol. 2, pp. 54-61.
    • (2003) IEEE Conf. Comput. Vis. Pattern Recognit , vol.2 , pp. 54-61
    • Fowlkes, C.1    Martin, D.2    Malik, J.3
  • 39
    • 34548403887 scopus 로고    scopus 로고
    • Segmentation of sub-cortical structures by the graph-shifts algorithm
    • N. Karssemeijer and B. Lelieveldt, Eds
    • J. J. Corso, Z. Tu, A. Yuille, and A. W. Toga, "Segmentation of sub-cortical structures by the graph-shifts algorithm," in Proc. Inf. Process. Med. Imag., N. Karssemeijer and B. Lelieveldt, Eds., 2007, pp. 183-197.
    • (2007) Proc. Inf. Process. Med. Imag , pp. 183-197
    • Corso, J.J.1    Tu, Z.2    Yuille, A.3    Toga, A.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.