메뉴 건너뛰기




Volumn 58, Issue 25, 2013, Pages 3044-3052

Review of the uncertainty analysis of groundwater numerical simulation

Author keywords

conceptual model; groundwater modeling; model parameter; observation data; uncertainty analysis

Indexed keywords


EID: 84883465744     PISSN: 10016538     EISSN: 18619541     Source Type: Journal    
DOI: 10.1007/s11434-013-5950-8     Document Type: Review
Times cited : (79)

References (81)
  • 1
    • 18144388681 scopus 로고    scopus 로고
    • Toward a generalized theory of uncertainty (GTU)-An outline
    • Zadeh L A. Toward a generalized theory of uncertainty (GTU)-An outline. Inform Sci, 2005, 172: 1-40.
    • (2005) Inform Sci , vol.172 , pp. 1-40
    • Zadeh, L.A.1
  • 2
    • 60949084918 scopus 로고    scopus 로고
    • Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model
    • Hassan A E, Bekhit H M, Chapman J B. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environ Modell Softw, 2009, 24: 749-763.
    • (2009) Environ Modell Softw , vol.24 , pp. 749-763
    • Hassan, A.E.1    Bekhit, H.M.2    Chapman, J.B.3
  • 3
    • 55849114052 scopus 로고    scopus 로고
    • Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis
    • Hassan A E, Bekhit H M, Chapman J B. Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis. J Hydrol, 2008, 362: 89-109.
    • (2008) J Hydrol , vol.362 , pp. 89-109
    • Hassan, A.E.1    Bekhit, H.M.2    Chapman, J.B.3
  • 4
    • 84863047467 scopus 로고    scopus 로고
    • Sensitivity analysis of the probability distribution of groundwater level series based on information entropy
    • Zeng X K, Wang D, Wu J C. Sensitivity analysis of the probability distribution of groundwater level series based on information entropy. Stoch Env Res Risk A, 2012, 26: 345-356.
    • (2012) Stoch Env Res Risk A , vol.26 , pp. 345-356
    • Zeng, X.K.1    Wang, D.2    Wu, J.C.3
  • 5
    • 58149089051 scopus 로고    scopus 로고
    • Sustainable water resource management under hydrological uncertainty
    • Ajami N K, Hornberger G M, Sunding D L. Sustainable water resource management under hydrological uncertainty. Water Resour Res, 2008, 44: W11406.
    • (2008) Water Resour Res , vol.44
    • Ajami, N.K.1    Hornberger, G.M.2    Sunding, D.L.3
  • 6
    • 59649124252 scopus 로고    scopus 로고
    • Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging
    • Rojas R, Feyen L, Dassargues A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res, 2008, 44: W12418.
    • (2008) Water Resour Res , vol.44
    • Rojas, R.1    Feyen, L.2    Dassargues, A.3
  • 9
    • 77954117769 scopus 로고    scopus 로고
    • Uncertainty on numerical simulation of groundwater flow in the riverside well field (in Chinese)
    • Liu P G, Shu L C. Uncertainty on numerical simulation of groundwater flow in the riverside well field (in Chinese). J Jilin Univ (Earth Science Edition), 2008, 38: 639-644.
    • (2008) J Jilin Univ (Earth Science Edition) , vol.38 , pp. 639-644
    • Liu, P.G.1    Shu, L.C.2
  • 10
    • 70449532142 scopus 로고    scopus 로고
    • Flood risk curves and uncertainty bounds
    • Merz B, Thieken A H. Flood risk curves and uncertainty bounds. Nat Hazards, 2009, 51: 437-458.
    • (2009) Nat Hazards , vol.51 , pp. 437-458
    • Merz, B.1    Thieken, A.H.2
  • 11
    • 77952280824 scopus 로고    scopus 로고
    • Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA
    • Yang P H, Yuan D X, Yuan W H, et al. Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chin Sci Bull, 2010, 55: 1412-1422.
    • (2010) Chin Sci Bull , vol.55 , pp. 1412-1422
    • Yang, P.H.1    Yuan, D.X.2    Yuan, W.H.3
  • 12
    • 2642533873 scopus 로고    scopus 로고
    • Alternative representations of epistemic uncertainty
    • Helton J C, Oberkampf W L. Alternative representations of epistemic uncertainty. Reliab Eng Syst Safe, 2004, 85: 1-10.
    • (2004) Reliab Eng Syst Safe , vol.85 , pp. 1-10
    • Helton, J.C.1    Oberkampf, W.L.2
  • 14
    • 77954973403 scopus 로고    scopus 로고
    • Model averaging techniques for quantifying conceptual model uncertainty
    • Singh A, Mishra S, Ruskauff G. Model averaging techniques for quantifying conceptual model uncertainty. Ground Water, 2010, 48: 701-715.
    • (2010) Ground Water , vol.48 , pp. 701-715
    • Singh, A.1    Mishra, S.2    Ruskauff, G.3
  • 15
    • 40849146963 scopus 로고    scopus 로고
    • Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling
    • Blasone R S, Vrugt J A, Madsen H, et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour, 2008, 31: 630-648.
    • (2008) Adv Water Resour , vol.31 , pp. 630-648
    • Blasone, R.S.1    Vrugt, J.A.2    Madsen, H.3
  • 16
    • 84859473219 scopus 로고    scopus 로고
    • Bayesian analysis for uncertainty and risk in a groundwater numerical model's predictions
    • Wu J C, Lu L, Tang T. Bayesian analysis for uncertainty and risk in a groundwater numerical model's predictions. Hum Ecol Risk Assess, 2011, 7: 1310-1331.
    • (2011) Hum Ecol Risk Assess , vol.7 , pp. 1310-1331
    • Wu, J.C.1    Lu, L.2    Tang, T.3
  • 17
    • 77649184126 scopus 로고    scopus 로고
    • Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model
    • Jin X L, Xu C Y, Zhang Q, et al. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol, 2010, 383: 147-155.
    • (2010) J Hydrol , vol.383 , pp. 147-155
    • Jin, X.L.1    Xu, C.Y.2    Zhang, Q.3
  • 18
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami N K, Duan Q Y, Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res, 2007, 43: W01403.
    • (2007) Water Resour Res , vol.43
    • Ajami, N.K.1    Duan, Q.Y.2    Sorooshian, S.3
  • 19
    • 84873733710 scopus 로고    scopus 로고
    • Reliability analysis of the groundwater conceptual model
    • Zeng X K, Wang D, Wu J C, et al. Reliability analysis of the groundwater conceptual model. Hum Ecol Risk Assess, 2013, 19: 515-525.
    • (2013) Hum Ecol Risk Assess , vol.19 , pp. 515-525
    • Zeng, X.K.1    Wang, D.2    Wu, J.C.3
  • 20
    • 33846270353 scopus 로고    scopus 로고
    • Progress in study on irrigation practice with saline groundwater on sandlands of Taklimakan Desert Hinterland
    • Xu X W, Li B W, Wang X J. Progress in study on irrigation practice with saline groundwater on sandlands of Taklimakan Desert Hinterland. Chin Sci Bull, 2006, 51: 161-166.
    • (2006) Chin Sci Bull , vol.51 , pp. 161-166
    • Xu, X.W.1    Li, B.W.2    Wang, X.J.3
  • 21
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • Renard B, Kavetski D, Kuczera G, et al. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour Res, 2010, 46: W05521.
    • (2010) Water Resour Res , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3
  • 22
    • 84855208638 scopus 로고    scopus 로고
    • Review of strategies for handling geological uncertainty in groundwater flow and transport modeling
    • Refsgaard J C, Christensen S, Sonnenborg T O, et al. Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv Water Resour, 2012, 36: 36-50.
    • (2012) Adv Water Resour , vol.36 , pp. 36-50
    • Refsgaard, J.C.1    Christensen, S.2    Sonnenborg, T.O.3
  • 23
    • 78149414491 scopus 로고    scopus 로고
    • Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling
    • Rojas R, Kahunde S, Peeters L, et al. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. J Hydrol, 2010, 394: 416-435.
    • (2010) J Hydrol , vol.394 , pp. 416-435
    • Rojas, R.1    Kahunde, S.2    Peeters, L.3
  • 24
    • 77954990181 scopus 로고    scopus 로고
    • A model-averaging method for assessing groundwater conceptual model uncertainty
    • Ye M, Pohlmann K F, Chapman J B, et al. A model-averaging method for assessing groundwater conceptual model uncertainty. Ground Water, 2010, 48: 716-728.
    • (2010) Ground Water , vol.48 , pp. 716-728
    • Ye, M.1    Pohlmann, K.F.2    Chapman, J.B.3
  • 25
    • 33947533125 scopus 로고    scopus 로고
    • What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology
    • Montanari A. What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process, 2007, 21: 841-845.
    • (2007) Hydrol Process , vol.21 , pp. 841-845
    • Montanari, A.1
  • 26
    • 0027009437 scopus 로고
    • The future of distributed models-Model calibration and uncertainty prediction
    • Beven K, Binley A. The future of distributed models-Model calibration and uncertainty prediction. Hydrol Process, 1992, 6: 279-298.
    • (1992) Hydrol Process , vol.6 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 27
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    • Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol, 2001, 249: 11-29.
    • (2001) J Hydrol , vol.249 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 28
    • 67349108765 scopus 로고    scopus 로고
    • GLUE based assessment on the overall predictions of a MIKE SHE application
    • Vazquez R F, Beven K, Feyen J. GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resour Manag, 2009, 23: 1325-1349.
    • (2009) Water Resour Manag , vol.23 , pp. 1325-1349
    • Vazquez, R.F.1    Beven, K.2    Feyen, J.3
  • 29
    • 0035505081 scopus 로고    scopus 로고
    • Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions
    • Brazier R E, Beven K J, Anthony S G, et al. Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions. Earth Surf Proc Land, 2001, 26: 1333-1352.
    • (2001) Earth Surf Proc Land , vol.26 , pp. 1333-1352
    • Brazier, R.E.1    Beven, K.J.2    Anthony, S.G.3
  • 30
    • 2942704248 scopus 로고    scopus 로고
    • Including prior information in the estimation of effective soil parameters in unsaturated zone modelling
    • Mertens J, Madsen H, Feyen L, et al. Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. J Hydrol, 2004, 294: 251-269.
    • (2004) J Hydrol , vol.294 , pp. 251-269
    • Mertens, J.1    Madsen, H.2    Feyen, L.3
  • 31
    • 0344938261 scopus 로고    scopus 로고
    • Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data
    • Aronica G, Hankin B, Beven K. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Adv Water Resour, 1998, 22: 349-365.
    • (1998) Adv Water Resour , vol.22 , pp. 349-365
    • Aronica, G.1    Hankin, B.2    Beven, K.3
  • 32
    • 33748808177 scopus 로고    scopus 로고
    • Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology
    • Mantovan P, Todini E. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J Hydrol, 2006, 330: 368-381.
    • (2006) J Hydrol , vol.330 , pp. 368-381
    • Mantovan, P.1    Todini, E.2
  • 33
    • 34247860865 scopus 로고    scopus 로고
    • Reply to comment by Keith Beven, Paul Smith and Jim Freer on Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology
    • Mantovan P, Todini E, Martina M L V. Reply to comment by Keith Beven, Paul Smith and Jim Freer on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology". J Hydrol, 2007, 338: 319-324.
    • (2007) J Hydrol , vol.338 , pp. 319-324
    • Mantovan, P.1    Todini, E.2    Martina, M.L.V.3
  • 34
    • 34247893975 scopus 로고    scopus 로고
    • Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini
    • Beven K, Smith P, Freer J. Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini. J Hydrol, 2007, 338: 315-318.
    • (2007) J Hydrol , vol.338 , pp. 315-318
    • Beven, K.1    Smith, P.2    Freer, J.3
  • 35
    • 43449131518 scopus 로고    scopus 로고
    • So just why would a modeller choose to be incoherent?
    • Beven K, Smith P, Freer J. So just why would a modeller choose to be incoherent? J Hydrol, 2008, 354: 15-32.
    • (2008) J Hydrol , vol.354 , pp. 15-32
    • Beven, K.1    Smith, P.2    Freer, J.3
  • 36
    • 1542757127 scopus 로고    scopus 로고
    • A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res, 2003, 39: Artn 1201.
    • (2003) Water Resour Res , vol.39 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3
  • 37
    • 5744249209 scopus 로고
    • Equation of state calculations by fast computing machines
    • Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines. J Chem Phys, 1953, 21: 1087-1092.
    • (1953) J Chem Phys , vol.21 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, A.W.2    Rosenbluth, M.N.3
  • 38
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57: 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 39
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario H, Saksman E, Tamminen J. Adaptive proposal distribution for random walk Metropolis algorithm. Comput Stat, 1999, 14: 375-395.
    • (1999) Comput Stat , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 40
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm. Bernoulli, 2001, 7: 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 41
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    • Bates B C, Campbell E P. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res, 2001, 37: 937-947.
    • (2001) Water Resour Res , vol.37 , pp. 937-947
    • Bates, B.C.1    Campbell, E.P.2
  • 42
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res, 2004, 40: W02501.
    • (2004) Water Resour Res , vol.40
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 43
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • Gelfand A E, Hills S E, Racine-Poon A, et al. Illustration of Bayesian inference in normal data models using Gibbs sampling. J Am Stat Assoc, 1990, 85: 972-985.
    • (1990) J Am Stat Assoc , vol.85 , pp. 972-985
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3
  • 44
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q Y, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res, 1992, 28: 1015-1031.
    • (1992) Water Resour Res , vol.28 , pp. 1015-1031
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.3
  • 45
    • 33745603720 scopus 로고    scopus 로고
    • A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces
    • Braak C. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces. Stat Comput, 2006, 16: 239-249.
    • (2006) Stat Comput , vol.16 , pp. 239-249
    • Braak, C.1
  • 46
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt JA, ter Braak C J F, Diks C G H, et al. Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlin Sci Num, 2009, 10: 273-290.
    • (2009) Int J Nonlin Sci Num , vol.10 , pp. 273-290
    • Vrugt, J.A.1    ter Braak, C.J.F.2    Diks, C.G.H.3
  • 47
    • 84883457206 scopus 로고    scopus 로고
    • DREAM(D): An adaptive markov chain monte carlo simulation algorithm to solve discrete, noncontinuous, posterior parameter estimation problems
    • Vrugt J A. DREAM(D): An adaptive markov chain monte carlo simulation algorithm to solve discrete, noncontinuous, posterior parameter estimation problems. Hydrol Earth Syst Sci, 2011, 8: 4025-4052.
    • (2011) Hydrol Earth Syst Sci , vol.8 , pp. 4025-4052
    • Vrugt, J.A.1
  • 48
    • 84856263454 scopus 로고    scopus 로고
    • High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing
    • Laloy E, Vrugt J A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing. Water Resour Res, 2012, 48: W01526.
    • (2012) Water Resour Res , vol.48
    • Laloy, E.1    Vrugt, J.A.2
  • 49
    • 84876587509 scopus 로고    scopus 로고
    • Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null-space monte carlo and multiple starting point methods
    • Yoon H, Hart D B, McKenna S A. Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null-space monte carlo and multiple starting point methods. Water Resour Res, 2013, 49: 536-553.
    • (2013) Water Resour Res , vol.49 , pp. 536-553
    • Yoon, H.1    Hart, D.B.2    McKenna, S.A.3
  • 50
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrologic models. Water Resour Res, 2001, 37: 2521-2535.
    • (2001) Water Resour Res , vol.37 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3
  • 51
    • 0032765857 scopus 로고    scopus 로고
    • UCODE, a computer code for universal inverse modeling
    • Poeter E P, Hill M C. UCODE, a computer code for universal inverse modeling. Comput Geosci, 1999, 25: 457-462.
    • (1999) Comput Geosci , vol.25 , pp. 457-462
    • Poeter, E.P.1    Hill, M.C.2
  • 53
    • 17144430044 scopus 로고    scopus 로고
    • The conceptualization model problem-surprise
    • Bredehoeft J. The conceptualization model problem-surprise. Hydrogeol J, 2005, 13: 37-46.
    • (2005) Hydrogeol J , vol.13 , pp. 37-46
    • Bredehoeft, J.1
  • 54
    • 34547119954 scopus 로고    scopus 로고
    • The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system
    • Troldborg L, Refsgaard J C, Jensen K H, et al. The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system. Hydrogeol J, 2007, 15: 843-860.
    • (2007) Hydrogeol J , vol.15 , pp. 843-860
    • Troldborg, L.1    Refsgaard, J.C.2    Jensen, K.H.3
  • 55
    • 22244490375 scopus 로고    scopus 로고
    • Multimodel ranking and inference in ground water modeling
    • Poeter E, Anderson D. Multimodel ranking and inference in ground water modeling. Ground Water, 2005, 43: 597-605.
    • (2005) Ground Water , vol.43 , pp. 597-605
    • Poeter, E.1    Anderson, D.2
  • 56
    • 33748416660 scopus 로고    scopus 로고
    • A framework for dealing with uncertainty due to model structure error
    • Refsgaard J C, van der Sluijs J P, Brown J, et al. A framework for dealing with uncertainty due to model structure error. Adv Water Resour, 2006, 29: 1586-1597.
    • (2006) Adv Water Resour , vol.29 , pp. 1586-1597
    • Refsgaard, J.C.1    van der Sluijs, J.P.2    Brown, J.3
  • 57
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper D. Assessment and propagation of model uncertainty. J Roy Stat Soc B Met, 1995, 57: 45-97.
    • (1995) J Roy Stat Soc B Met , vol.57 , pp. 45-97
    • Draper, D.1
  • 59
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr, 1974, 19: 716-723.
    • (1974) IEEE Trans Automat Contr , vol.19 , pp. 716-723
    • Akaike, H.1
  • 60
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich C M, Tsai C L. Regression and time series model selection in small samples. Biometrika, 1989, 76: 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 61
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6: 461-464.
    • (1978) Ann Statist , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 62
    • 0000263475 scopus 로고
    • The Determination of the order of an autoregression
    • Hannan E J, Quinn B G. The Determination of the order of an autoregression. J Roy Stat Soc Ser B-Stat Met, 1979, 41: 190-195.
    • (1979) J Roy Stat Soc Ser B-Stat Met , vol.41 , pp. 190-195
    • Hannan, E.J.1    Quinn, B.G.2
  • 63
    • 0020102315 scopus 로고
    • Optimal choice of AR and MA parts in autoregressive moving average models
    • Kashyap R L. Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Patt Anal Mach Int, 1982, 4: 99-104.
    • (1982) IEEE Trans Patt Anal Mach Int , vol.4 , pp. 99-104
    • Kashyap, R.L.1
  • 65
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • Neuman S P. Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A, 2003, 17: 291-305.
    • (2003) Stoch Env Res Risk A , vol.17 , pp. 291-305
    • Neuman, S.P.1
  • 66
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • Ye M, Neuman S P, Meyer P D. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res, 2004, 40: W05113.
    • (2004) Water Resour Res , vol.40
    • Ye, M.1    Neuman, S.P.2    Meyer, P.D.3
  • 67
    • 55249111575 scopus 로고    scopus 로고
    • Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window
    • Tsai FTC, Li X. Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour Res, 2008, 44: W09434.
    • (2008) Water Resour Res , vol.44
    • Tsai, F.T.C.1    Li, X.2
  • 68
    • 83555179213 scopus 로고    scopus 로고
    • A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow
    • Yustres A, Asensio L, Alonso J, et al. A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow. Computat Geosci, 2012, 16: 1-20.
    • (2012) Computat Geosci , vol.16 , pp. 1-20
    • Yustres, A.1    Asensio, L.2    Alonso, J.3
  • 69
    • 84876540076 scopus 로고    scopus 로고
    • Evaluating model structure adequacy: The case of the maggia valley groundwater system, southern switzerland
    • Foglia L, Mehl SW, Hill MC, et al. Evaluating model structure adequacy: The case of the maggia valley groundwater system, southern switzerland. Water Resour Res, 2013, 49: 260-282.
    • (2013) Water Resour Res , vol.49 , pp. 260-282
    • Foglia, L.1    Mehl, S.W.2    Hill, M.C.3
  • 70
    • 79951834688 scopus 로고    scopus 로고
    • MMA: A computer code for multimodel analysis
    • Ye M. MMA: A computer code for multimodel analysis. Ground Water, 2010, 48: 9-12.
    • (2010) Ground Water , vol.48 , pp. 9-12
    • Ye, M.1
  • 71
    • 77955578571 scopus 로고    scopus 로고
    • On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling
    • Rojas R, Feyen L, Batelaan O, et al. On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling. Water Resour Res, 2010, 46: W08520.
    • (2010) Water Resour Res , vol.46
    • Rojas, R.1    Feyen, L.2    Batelaan, O.3
  • 72
    • 64049097964 scopus 로고    scopus 로고
    • Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modeling
    • Rojas R, Feyen L, Dassargues A. Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modeling. Hydrol Process, 2009, 23: 1131-1146.
    • (2009) Hydrol Process , vol.23 , pp. 1131-1146
    • Rojas, R.1    Feyen, L.2    Dassargues, A.3
  • 73
    • 79551503155 scopus 로고    scopus 로고
    • Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework
    • Troldborg M, Nowak W, Tuxen N, et al. Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework. Water Resour Res, 2010, 46: W12552.
    • (2010) Water Resour Res , vol.46
    • Troldborg, M.1    Nowak, W.2    Tuxen, N.3
  • 74
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev, 2005, 133: 1155-1174.
    • (2005) Mon Weather Rev , vol.133 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3
  • 75
    • 84855245162 scopus 로고    scopus 로고
    • Analysis of hydrogeological structure uncertainty by estimation of hydrogeological acceptance probability of geostatistical models
    • Harp D R, Vesselinov V V. Analysis of hydrogeological structure uncertainty by estimation of hydrogeological acceptance probability of geostatistical models. Adv Water Resour, 2012, 36: 64-74.
    • (2012) Adv Water Resour , vol.36 , pp. 64-74
    • Harp, D.R.1    Vesselinov, V.V.2
  • 76
    • 34748920000 scopus 로고    scopus 로고
    • Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics
    • Post J, Hattermann F F, Krysanova V, et al. Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environ Modell Softw, 2008, 23: 125-138.
    • (2008) Environ Modell Softw , vol.23 , pp. 125-138
    • Post, J.1    Hattermann, F.F.2    Krysanova, V.3
  • 77
    • 84926231864 scopus 로고    scopus 로고
    • Comment on "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction" by Newsha K
    • Renard B, Kavetski D, Kuczera G. Comment on "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction" by Newsha K. Ajami et al. Water Resour Res, 2009, 45: W03603.
    • (2009) Ajami Et Al. Water Resour Res , vol.45
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3
  • 78
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res, 1999, 35: 2739-2750.
    • (1999) Water Resour Res , vol.35 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 79
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
    • Kavetski D, Kuczera G, Franks S W. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour Res, 2006, 42: W03408.
    • (2006) Water Resour Res , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 80
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • Kavetski D, G Kuczera, SW Franks. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res, 2006, 42: W03407.
    • (2006) Water Resour Res , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 81
    • 78650261469 scopus 로고    scopus 로고
    • Information measures in perspective
    • Ebrahimi N, Soofi E S, Soyer R. Information measures in perspective. Int Stat Rev, 2010, 78: 383-412.
    • (2010) Int Stat Rev , vol.78 , pp. 383-412
    • Ebrahimi, N.1    Soofi, E.S.2    Soyer, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.