메뉴 건너뛰기




Volumn 48, Issue 1, 2012, Pages

High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN INFERENCE; COMPLEX MODEL; CURRENT GENERATION; DETAILED BALANCE; DIFFERENTIAL EVOLUTION; DISTRIBUTED HYDROLOGIC MODEL; EXCELLENT PERFORMANCE; GROUND WATER RECHARGE; HIGH-DIMENSIONAL; HIGH-PERFORMANCE COMPUTING; HISTORICAL RECORDS; HYDROLOGIC MODELS; MARKOV CHAIN MONTE CARLO ALGORITHMS; MCMC APPROACH; MULTIMODAL SEARCH; OPTIMIZATION ALGORITHMS; PERFORMANCE IMPROVEMENTS; POSTERIOR DISTRIBUTIONS; POSTERIOR PROBABILITY; PREDICTIVE UNCERTAINTY; PROPOSAL DISTRIBUTION; RIVER DISCHARGE; SEARCH PROBLEM; SURFACE RUNOFFS;

EID: 84856263454     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2011WR010608     Document Type: Article
Times cited : (449)

References (46)
  • 2
    • 0001632928 scopus 로고
    • The NWS river forecast system-catchment modeling
    • edited by V. P. Singh Water Resour. Publ., Littleton, Colo
    • Burnash, R. J. C. (1995), The NWS river forecast system-catchment modeling, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 311-366, Water Resour. Publ., Littleton, Colo.
    • (1995) Computer Models of Watershed Hydrology , pp. 311-366
    • Burnash, R.J.C.1
  • 3
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for stochastic volatility models
    • Chib, S., F. Nardari, and N. Shepard (2002), Markov chain Monte Carlo methods for stochastic volatility models, J. Econometrics, 108, 281-316.
    • (2002) J. Econometrics , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shepard, N.3
  • 4
    • 77957717377 scopus 로고    scopus 로고
    • Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: Application to the calibration of the Sacramento soil moisture accounting model
    • doi:10.1029/2010WR009224
    • Chu, W., X. Gao, and S. Sorooshian (2010), Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: Application to the calibration of the Sacramento soil moisture accounting model, Water Resour. Res., 46, W09530, doi:10.1029/2010WR009224.
    • (2010) Water Resour. Res. , vol.46
    • Chu, W.1    Gao, X.2    Sorooshian, S.3
  • 5
    • 74049163249 scopus 로고    scopus 로고
    • Learn from thy neighbor: Parallel-chain and regional adaptive MCMC
    • Craiu, V. R., J. Rosenthal, and C. Yang (2009), Learn from thy neighbor: Parallel-chain and regional adaptive MCMC, J. Am. Stat. Assoc, 104(488), 1454-1466.
    • (2009) J. Am. Stat. Assoc , vol.104 , Issue.488 , pp. 1454-1466
    • Craiu, V.R.1    Rosenthal, J.2    Yang, C.3
  • 6
    • 84856566525 scopus 로고    scopus 로고
    • Significant variation in vegetation characteristics and dynamics from ecohydrological opti-mality of net carbon profit
    • doi:10.1002/eco.177 in press
    • Dekker, S. C., J. A. Vrugt, and R. J. Elkington (2012), Significant variation in vegetation characteristics and dynamics from ecohydrological opti-mality of net carbon profit, Ecohydrology, doi:10.1002/eco.177, in press.
    • (2012) Ecohydrology
    • Dekker, S.C.1    Vrugt, J.A.2    Elkington, R.J.3
  • 7
    • 44949107405 scopus 로고    scopus 로고
    • PEST: Model independent parameter estimation, software
    • Corinda, Queensland, Australia
    • Doherty, J. (2009), PEST: Model independent parameter estimation, software, Watermark Numer. Comput., Corinda, Queensland, Australia. [Available at http://www.pesthomepage.org.]
    • (2009) Watermark Numer. Comput.
    • Doherty, J.1
  • 8
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., V. K. Gupta, and S. Sorooshian (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water. Resour. Res, 28, 1015-1031.
    • (1992) Water. Resour. Res , vol.28 , pp. 1015-1031
    • Duan, Q.1    Gupta, V.K.2    Sorooshian, S.3
  • 9
    • 33644888649 scopus 로고    scopus 로고
    • Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods
    • DOI 10.1016/j.csda.2005.04.018, PII S0167947305000836
    • El Adlouni, S., A.-C. Favre, and B. Bobée (2006), Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods, Comput. Stat. Data Anal., 50(10), 2685-2701. (Pubitemid 44389653)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.10 , pp. 2685-2701
    • El Adlouni, S.1    Favre, A.-C.2    Bobee, B.3
  • 10
    • 11144230021 scopus 로고    scopus 로고
    • Speed-up of Monte Carlo simulations by sampling of rejected states
    • doi:10.703/pnas.0407950101
    • Frenkel, D. (2004), Speed-up of Monte Carlo simulations by sampling of rejected states, Proc. Natl. Acad. Sci. U. S. A., 101(51), 457-472, doi:10.703/pnas.0407950101.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , Issue.51 , pp. 457-472
    • Frenkel, D.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. G., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.G.1    Rubin, D.B.2
  • 12
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • edited by J. M. Bernado et al. Clarendon, Oxford, U. K
    • Geweke, J. (1992), Evaluating the accuracy of sampling-based approaches to calculating posterior moments, in Bayesian Statistics 4, edited by J. M. Bernado et al., pp. 169-194, Clarendon, Oxford, U. K.
    • (1992) Bayesian Statistics 4 , pp. 169-194
    • Geweke, J.1
  • 13
    • 0002388372 scopus 로고    scopus 로고
    • Strategies for improving MCMC
    • edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter Chapman and Hall, London
    • Gilks, W. R., and G. O. Roberts (1996), Strategies for improving MCMC, in Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, pp. 89-114, Chapman and Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 89-114
    • Gilks, W.R.1    Roberts, G.O.2
  • 15
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario, H., E. Saksman, and J. Tamminen (1999), Adaptive proposal distribution for random walk Metropolis algorithm, Comp. Stat., 14(3), 375-395.
    • (1999) Comp. Stat. , vol.14 , Issue.3 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 16
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7, 223-242. (Pubitemid 33793059)
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 17
    • 33746082065 scopus 로고    scopus 로고
    • Componentwise adaptation for high dimensional MCMC
    • Haario, H., E. Saksman, and J. Tamminen (2005), Componentwise adaptation for high dimensional MCMC, Stat. Comput., 20, 265-274.
    • (2005) Stat. Comput. , vol.20 , pp. 265-274
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 18
  • 19
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    • DOI 10.1162/106365603321828970
    • Hansen, N., S. D. Muller, and P. Koumoutasakos (2003), Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMAES), Evol. Comput., 11(1), 1-18, doi:10.1162/106365603321828970. (Pubitemid 37044186)
    • (2003) Evolutionary Computation , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Muller, S.D.2    Koumoutsakos, P.3
  • 20
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, H. (1970), Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, H.1
  • 21
    • 77958611862 scopus 로고    scopus 로고
    • Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality
    • doi:10.1029/2009WR008584
    • Keating, E. H., J. Doherty, J. A. Vrugt, and Q. Kang (2010), Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality, Water Resour. Res., 46, W10517, doi:10.1029/ 2009WR008584.
    • (2010) Water Resour. Res. , vol.46
    • Keating, E.H.1    Doherty, J.2    Vrugt, J.A.3    Kang, Q.4
  • 22
    • 77955226431 scopus 로고    scopus 로고
    • A limited memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models
    • doi:10.1029/2009WR008985
    • Kuczera, G., D. Kavetski, B. Renard, and M. Thyer (2010), A limited memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models, Water Resour. Res., 46, W07602, doi:10.1029/2009WR008985.
    • (2010) Water Resour. Res. , vol.46
    • Kuczera, G.1    Kavetski, D.2    Renard, B.3    Thyer, M.4
  • 23
    • 71849088035 scopus 로고    scopus 로고
    • Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach
    • doi:10.1016/j.jhydrol.2009.10.025
    • Laloy, E., D. Fasbender, and C. L. Bielders (2010a), Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach, J. Hydrol., 380(1-2), 82-93, doi:10.1016/j.jhydrol.2009.10.025.
    • (2010) J. Hydrol. , vol.380 , Issue.1-2 , pp. 82-93
    • Laloy, E.1    Fasbender, D.2    Bielders, C.L.3
  • 24
    • 77957749928 scopus 로고    scopus 로고
    • How efficient are one-dimensional models to reproduce the hydrodynamic behavior of structured soils subjected to multi-step outflow experiments?
    • doi:10.1016/j.jhydrol.2010.02.017
    • Laloy, E., M. Weynants, C. L. Bielders, M. Vanclooster, and M. Javaux (2010b), How efficient are one-dimensional models to reproduce the hydrodynamic behavior of structured soils subjected to multi-step outflow experiments? J. Hydrol., 393(1-2), 37-52, doi:10.1016/j.jhydrol.2010.02.017.
    • (2010) J. Hydrol. , vol.393 , Issue.1-2 , pp. 37-52
    • Laloy, E.1    Weynants, M.2    Bielders, C.L.3    Vanclooster, M.4    Javaux, M.5
  • 25
    • 0442309554 scopus 로고    scopus 로고
    • The multiple-try method and local optimization in Metropolis sampling
    • doi:10.2307/2669532
    • Liu, J. S., F. Liang, and W. H. Wong (2000), The multiple-try method and local optimization in Metropolis sampling, J. Am. Stat. Assoc., 95(449), 121-134, doi:10.2307/2669532.
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.449 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 26
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D. W. (1963), An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431-441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 27
    • 59149084494 scopus 로고    scopus 로고
    • Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
    • doi:10.1016/j.jcp.2008.11.024
    • Marzouk, Y. M., and H. N. Najm (2009), Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 118, 862-902, doi:10.1016/j.jcp.2008.11.024.
    • (2009) J. Comput. Phys. , vol.118 , pp. 862-902
    • Marzouk, Y.M.1    Najm, H.N.2
  • 30
    • 84972518066 scopus 로고
    • One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo
    • Raftery, A. E., and S. M. Lewis (1992), One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo, Stat. Sci., 7, 493-497.
    • (1992) Stat. Sci. , vol.7 , pp. 493-497
    • Raftery, A.E.1    Lewis, S.M.2
  • 31
    • 38149146212 scopus 로고
    • Convergence of adaptive direction sampling
    • Roberts, G. O., and W. R. Gilks (1994), Convergence of adaptive direction sampling, J. Multivariate Anal., 49, 287-298.
    • (1994) J. Multivariate Anal. , vol.49 , pp. 287-298
    • Roberts, G.O.1    Gilks, W.R.2
  • 33
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • Roberts, G. O., and J. S. Rosenthal (2007), Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms, J. Appl. Probab., 44, 458-475.
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 34
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts, G. O., A. Gelman, and W. R. Gilks (1997), Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110-120.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 35
    • 77649148731 scopus 로고    scopus 로고
    • Information content of incubation experiments for inverse modeling of carbon pools in the Rothamsted model: A Bayesian approach
    • Scharnagl, B., J. A. Vrugt, H. Vereecken, and M. Herbst (2010), Information content of incubation experiments for inverse modeling of carbon pools in the Rothamsted model: A Bayesian approach, Biogeosciences, 7, 763-776.
    • (2010) Biogeosciences , vol.7 , pp. 763-776
    • Scharnagl, B.1    Vrugt, J.A.2    Vereecken, H.3    Herbst, M.4
  • 36
    • 77954727893 scopus 로고    scopus 로고
    • A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors
    • doi:10.1029/2009WR008933
    • Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors, Water Resour. Res., 46, W10531, doi:10.1029/2009WR008933.
    • (2010) Water Resour. Res. , vol.46
    • Schoups, G.1    Vrugt, J.A.2
  • 37
    • 33745603720 scopus 로고    scopus 로고
    • A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces
    • DOI 10.1007/s11222-006-8769-1
    • ter Braak, C. J. F. (2006), A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter space, Stat. Comput., 16(3), 239-249, doi:10.1007/s11222-006-8769-1. (Pubitemid 43992692)
    • (2006) Statistics and Computing , vol.16 , Issue.3 , pp. 239-249
    • Ter Braak, C.J.F.1
  • 38
    • 57849128804 scopus 로고    scopus 로고
    • Differential evolution Markov chain with snooker updater and fewer chains
    • doi:10.1007/s11222-008-9104-9
    • ter Braak, C. J. F., and J. A. Vrugt (2008), Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 18(4), 435-446, doi:10.1007/s11222-008-9104-9.
    • (2008) Stat. Comput. , vol.18 , Issue.4 , pp. 435-446
    • Ter Braak, C.J.F.1    Vrugt, J.A.2
  • 39
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • DOI 10.1029/2000WR900405
    • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37(10), 2521-2535, doi:10.1029/2000WR900405. (Pubitemid 32908202)
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3    Sorooshian, S.4
  • 40
    • 28244473669 scopus 로고    scopus 로고
    • A hybrid regularized inversion methodology for highly parameterized environmental models
    • DOI 10.1029/2005WR003995, W10412
    • Tonkin, M., and J. Doherty (2005), A hybrid regularized inversion methodology for highly parameterized environmental models, Water Resour. Res., 41, W10412, doi:10.1029/2005WR003995. (Pubitemid 41705697)
    • (2005) Water Resources Research , vol.41 , Issue.10
    • Tonkin, M.J.1    Doherty, J.2
  • 41
    • 70349766629 scopus 로고    scopus 로고
    • Calibration constrained Monte Carlo analysis of highly parameterized models using subspace techniques
    • doi:10.1029/2007WR006678
    • Tonkin, M., and J. Doherty (2009), Calibration constrained Monte Carlo analysis of highly parameterized models using subspace techniques, Water Resour. Res., 45, W00B10, doi:10.1029/2007WR006678.
    • (2009) Water Resour. Res. , vol.45
    • Tonkin, M.1    Doherty, J.2
  • 42
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 43
    • 33744917802 scopus 로고    scopus 로고
    • Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model
    • DOI 10.1016/j.jhydrol.2005.10.041, PII S0022169405005482
    • Vrugt, J. A., H. V. Gupta, S. C. Dekker, S. Sorooshian, T. Wagener, and W. Bouten (2006), Application of stochastic parameter optimization to the Sacramento soil moisture accounting model, J. Hydrol., 325(14), 288-307. (Pubitemid 43849763)
    • (2006) Journal of Hydrology , vol.325 , Issue.1-4 , pp. 288-307
    • Vrugt, J.A.1    Gupta, H.V.2    Dekker, S.C.3    Sorooshian, S.4    Wagener, T.5    Bouten, W.6
  • 44
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 45
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, D. Higdon, B. A. Robinson, and J. M. Hyman (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10(3), 273-290.
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , Issue.3 , pp. 273-290
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Higdon, D.4    Robinson, B.A.5    Hyman, J.M.6
  • 46
    • 0030162090 scopus 로고    scopus 로고
    • Calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo, P. O., H. V. Gupta, and S. Sorooshian (1996), Calibration of conceptual rainfall-runoff models: Sensitivity to calibration data, J. Hydrol., 181, 23-48.
    • (1996) J. Hydrol. , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.