메뉴 건너뛰기




Volumn 143, Issue 11, 2013, Pages 1835-1858

Correlated variables in regression: Clustering and sparse estimation

Author keywords

Canonical correlation; Group Lasso; Hierarchical clustering; High dimensional inference; Lasso; Oracle inequality; Variable screening; Variable selection

Indexed keywords


EID: 84883299225     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2013.05.019     Document Type: Article
Times cited : (139)

References (34)
  • 2
    • 11844293410 scopus 로고    scopus 로고
    • Partial correlation and conditional correlation as measures of conditional independence
    • Baba K., Shibata R., Sibuya M. Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics 2004, 46:657-664.
    • (2004) Australian & New Zealand Journal of Statistics , vol.46 , pp. 657-664
    • Baba, K.1    Shibata, R.2    Sibuya, M.3
  • 3
    • 33748804424 scopus 로고    scopus 로고
    • A tutorial on statistical methods for population association studies
    • Balding D. A tutorial on statistical methods for population association studies. Nature Reviews Genetics 2007, 7:781-791.
    • (2007) Nature Reviews Genetics , vol.7 , pp. 781-791
    • Balding, D.1
  • 4
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel P., Ritov Y., Tsybakov A. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics 2009, 37:1705-1732.
    • (2009) Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 5
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
    • Bondell H., Reich B. Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR. Biometrics 2008, 64:115-123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.1    Reich, B.2
  • 7
    • 84883289215 scopus 로고    scopus 로고
    • High-dimensional statistics with a view towards applications in biology. Annual Review in Statistics, in press.
    • Bühlmann, P., Kalisch, M., Meier, L. High-dimensional statistics with a view towards applications in biology. Annual Review in Statistics, in press.
    • Bühlmann, P.1    Kalisch, M.2    Meier, L.3
  • 8
    • 0346373654 scopus 로고    scopus 로고
    • Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium
    • Carlson C., Eberle M., Rieder M., Yi Q., Kruglyak L., Nickerson D. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. American Journal of Human Genetics 2004, 74:106-120.
    • (2004) American Journal of Human Genetics , vol.74 , pp. 106-120
    • Carlson, C.1    Eberle, M.2    Rieder, M.3    Yi, Q.4    Kruglyak, L.5    Nickerson, D.6
  • 9
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory, random matrices and Banach spaces
    • Elsevier
    • Davidson K., Szarek S. Local operator theory, random matrices and Banach spaces. Handbook in Banach Spaces 2001, vol. I:317-366. Elsevier.
    • (2001) Handbook in Banach Spaces , vol.1 , pp. 317-366
    • Davidson, K.1    Szarek, S.2
  • 11
  • 14
    • 80052846970 scopus 로고    scopus 로고
    • The sparse Laplacian shrinkage estimator for high-dimensional regression
    • Huang J., Ma S., Li H., Zhang C.-H. The sparse Laplacian shrinkage estimator for high-dimensional regression. Annals of Statistics 2011, 39:2021-2046.
    • (2011) Annals of Statistics , vol.39 , pp. 2021-2046
    • Huang, J.1    Ma, S.2    Li, H.3    Zhang, C.-H.4
  • 18
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N., Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics 2006, 34:1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 19
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen N., Yu B. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics 2009, 37:246-270.
    • (2009) Annals of Statistics , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 21
    • 79957976347 scopus 로고    scopus 로고
    • Sparse regression with exact clustering
    • She Y. Sparse regression with exact clustering. Electronic Journal of Statistics 2010, 4:1055-1096.
    • (2010) Electronic Journal of Statistics , vol.4 , pp. 1055-1096
    • She, Y.1
  • 22
    • 84882287077 scopus 로고    scopus 로고
    • A sparse-group Lasso. Journal of Computational and Graphical Statistics
    • Simon, N., Friedman, J., Hastie, T., Tibshirani, R., 2013. A sparse-group Lasso. Journal of Computational and Graphical Statistics, 22, 231-245.
    • (2013) , vol.22 , pp. 231-245
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 23
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • Sun T., Zhang C.-H. Scaled sparse linear regression. Biometrika 2012, 99:879-898.
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 25
    • 79960134528 scopus 로고    scopus 로고
    • Classification with correlated features: unreliability of feature ranking and solutions
    • Tolosi L., Lengauer T. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 2011, 27:1986-1994.
    • (2011) Bioinformatics , vol.27 , pp. 1986-1994
    • Tolosi, L.1    Lengauer, T.2
  • 26
    • 84883299181 scopus 로고    scopus 로고
    • The deterministic Lasso. In: JSM Proceedings, 2007, 140. American Statistical Association.
    • van de Geer, S., 2007. The deterministic Lasso. In: JSM Proceedings, 2007, 140. American Statistical Association.
    • (2007)
    • van de Geer, S.1
  • 27
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • van de Geer S., Bühlmann P. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics 2009, 3:1360-1392.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • van de Geer, S.1    Bühlmann, P.2
  • 28
    • 84883271815 scopus 로고    scopus 로고
    • The Lasso, correlated design, and improved oracle inequalities. In: IMS Collections 9 (From Probability to Statistics and Back: High-dimensional models and processes)
    • van de Geer, S., Lederer, J., 2012. The Lasso, correlated design, and improved oracle inequalities. In: IMS Collections 9 (From Probability to Statistics and Back: High-dimensional models and processes), 303-376.
    • (2012) , pp. 303-376
    • van de Geer, S.1    Lederer, J.2
  • 29
  • 30
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • Zhang C.-H., Huang J. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics 2008, 36:1567-1594.
    • (2008) Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 34
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
    • Zou H., Li R. One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Annals of Statistics 2008, 36:1509-1566.
    • (2008) Annals of Statistics , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.