메뉴 건너뛰기




Volumn 4, Issue , 2010, Pages 1055-1096

Sparse regression with exact clustering

Author keywords

Clustering; Lasso; Sparsity; Thresholding

Indexed keywords


EID: 79957976347     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-EJS578     Document Type: Article
Times cited : (129)

References (36)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing non zero variables or unsatisfied relations in linear systems
    • Amaldi, E. and Kann, V. (1998), “On the approximability of minimizing non zero variables or unsatisfied relations in linear systems,” Theoretical Computer Science, 209, 237-260.
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 5
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
    • Bondell, H. D. and Reich, B. J. (2008), “Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR,” Biometrics, 64, 115-123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 9
    • 50849141334 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much smaller than n
    • Candès, E. and Tao, T. (2005), “The Dantzig selector: statistical estimation when p is much smaller than n,” Annals of Statistics, 35, 2392-2404.
    • (2005) Annals of Statistics , vol.35 , pp. 2392-2404
    • Candès, E.1    Tao, T.2
  • 10
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies, I., Defrise, M., and De Mol, C. (2004), “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, 57, 1413-1457.
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 11
    • 4143134783 scopus 로고    scopus 로고
    • Finding Predictive Gene Groups from Microarray Data
    • Dettling, M. and Bühlmann, P. (2004), “Finding Predictive Gene Groups from Microarray Data,” Journal of Multivariate Analysis, 90, 106-131.
    • (2004) Journal of Multivariate Analysis , vol.90 , pp. 106-131
    • Dettling, M.1    Bühlmann, P.2
  • 12
    • 0002364055 scopus 로고
    • On the Mann iterative process
    • Dotson Jr., W. (1970), “On the Mann iterative process,” Trans. Amer. Math. Soc., 149, 65-73.
    • (1970) Trans. Amer. Math. Soc. , vol.149 , pp. 65-73
    • Dotson, W.1
  • 15
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge vs the lasso
    • Fu, W. (1998), “Penalized regressions: the bridge vs the lasso,” JCGS, 7, 397-416.
    • (1998) JCGS , vol.7 , pp. 397-416
    • Fu, W.1
  • 17
    • 0037715342 scopus 로고    scopus 로고
    • Simultaneous Gene Clustering and Subset Selection
    • Jörnsten, R. and Yu, B. (2003), “Simultaneous Gene Clustering and Subset Selection,” Bioinformatics, 19, 1100-1109.
    • (2003) Bioinformatics , vol.19 , pp. 1100-1109
    • Jörnsten, R.1    Yu, B.2
  • 18
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight, K. and Fu, W. (2000), “Asymptotics for lasso-type estimators,” Annals of Statistics, 28, 1356-1378.
    • (2000) Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 19
    • 84968518052 scopus 로고
    • Mean value methods in iteration
    • Mann, W. R. (1953), “Mean value methods in iteration,” Proc. Amer. Math. Soc., 4, 506-510.
    • (1953) Proc. Amer. Math. Soc. , vol.4 , pp. 506-510
    • Mann, W.R.1
  • 20
    • 0034247391 scopus 로고    scopus 로고
    • A note on the finite time behavior of simulated annealing
    • Nolte, A. and Schrader, R. (2000), “A note on the finite time behavior of simulated annealing,” Math. Operat. Res., 25, 476-484.
    • (2000) Math. Operat. Res. , vol.25 , pp. 476-484
    • Nolte, A.1    Schrader, R.2
  • 21
    • 84968481460 scopus 로고
    • Weak convergence of the sequence of successive approximations for nonexpansive mappings
    • Opial, Z. (1967), “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc., 73, 591-597.
    • (1967) Bull. Amer. Math. Soc. , vol.73 , pp. 591-597
    • Opial, Z.1
  • 24
    • 79952701411 scopus 로고    scopus 로고
    • Thresholding-based Iterative Selection Procedures for Model Selection and Shrinkage
    • She, Y. (2009), “Thresholding-based Iterative Selection Procedures for Model Selection and Shrinkage,” Electronic Journal of Statistics, 3, 384-415.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 384-415
    • She, Y.1
  • 26
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” JRSSB, 58, 267-288.
    • (1996) JRSSB , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 12844266177 scopus 로고    scopus 로고
    • Sparsity and smoothness via the fused lasso
    • Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005), “Sparsity and smoothness via the fused lasso,” JRSSB, 67, 91-108.
    • (2005) JRSSB , vol.67 , pp. 91-108
    • Tibshirani, R.1    Saunders, M.2    Rosset, S.3    Zhu, J.4    Knight, K.5
  • 28
    • 84861244238 scopus 로고
    • 2-Theorem for Simulated Annealing in Bayesian Image Reconstruction
    • 2-Theorem for Simulated Annealing in Bayesian Image Reconstruction,” Journal of Applied Probability, 28, 779-791.
    • (1990) Journal of Applied Probability , vol.28 , pp. 779-791
    • Wrinkler, G.1
  • 29
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate Descent Algorithm for Lasso Penalized Regression
    • Wu, T. and Lange, K. (2008), “Coordinate Descent Algorithm for Lasso Penalized Regression,” Ann. Appl. Stat., 2, 224-244.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 224-244
    • Wu, T.1    Lange, K.2
  • 30
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006), “Model selection and estimation in regression with grouped variables,” JRSSB, 68, 49-67.
    • (2006) JRSSB , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 31
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • Zhang, C.-H. and Huang, J. (2008), “The sparsity and bias of the Lasso selection in high-dimensional linear regression,” Ann. Statist, 36, 1567-1594.
    • (2008) Ann. Statist , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 33
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • Zhao, P. and Yu, B. (2006), “On Model Selection Consistency of Lasso,” Journal of Machine Learning Research, 7, 2541-2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 34
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” JASA, 101, 1418-1429.
    • (2006) JASA , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 35
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and Variable Selection via the Elastic Net
    • Zou, H. and Hastie, T. (2005), “Regularization and Variable Selection via the Elastic Net,” JRSSB, 67, 301-320.
    • (2005) JRSSB , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 36
    • 51049104549 scopus 로고    scopus 로고
    • One-step Sparse Estimates in Nonconcave Penalized Likelihood Models
    • Zou, H. and Li, R. (2008), “One-step Sparse Estimates in Nonconcave Penalized Likelihood Models,” Annals of Statistics, 1509-1533.
    • (2008) Annals of Statistics , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.