-
1
-
-
84864030941
-
An application of reinforcement learning to aerobatic helicopter flight
-
P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to aerobatic helicopter flight. In Advances in Neural Information Processing Systems, pages 1-8, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 1-8
-
-
Abbeel, P.1
Coates, A.2
Quigley, M.3
Ng, A.Y.4
-
2
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5:579-602, 2005.
-
(2005)
Journal of Vision
, vol.5
, pp. 579-602
-
-
Berkes, P.1
Wiskott, L.2
-
6
-
-
84865242246
-
Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis
-
W. Böhmer, S. Grünewälder, H. Nickisch, and K. Obermayer. Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis. Machine Learning, 89 (1-2):67-86, 2012.
-
(2012)
Machine Learning
, vol.89
, Issue.1-2
, pp. 67-86
-
-
Böhmer, W.1
Grünewälder, S.2
Nickisch, H.3
Obermayer, K.4
-
8
-
-
85153940465
-
Generalization in reinforcement learning: Safely approximating the value function
-
J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: safely approximating the value function. In Advances in Neural Information Processing Systems, pages 369-376, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, pp. 369-376
-
-
Boyan, J.A.1
Moore, A.W.2
-
10
-
-
0001771345
-
Linear least-squares algorithms for temporal difference learning
-
3
-
S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning. Machine Learning, 22 (1/2/3):33-57, 1996.
-
(1996)
Machine Learning
, vol.22
, Issue.1-2
, pp. 33-57
-
-
Bradtke, S.J.1
Barto, A.G.2
-
11
-
-
19644394100
-
Geometric diffusions as a tool for harmonic analysis and structure definition of data. Part I: Diffusion maps
-
May
-
R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition of data. Part I: diffusion maps. Proceedings of the National Academy of Science, 102(21):7426-7431, May 2005.
-
(2005)
Proceedings of the National Academy of Science
, vol.102
, Issue.21
, pp. 7426-7431
-
-
Coifman, R.1
Lafon, S.2
Lee, A.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.7
-
12
-
-
0038891993
-
Sparse on-line Gaussian processes
-
L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):641-668, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
14
-
-
0345414201
-
Real-time simultaneous localization and mapping with a single camera
-
A. J. Davison. Real-time simultaneous localization and mapping with a single camera. In IEEE International Conference on Computer Vision, volume 2, page 1403, 2003.
-
(2003)
IEEE International Conference on Computer Vision
, vol.2
, pp. 1403
-
-
Davison, A.J.1
-
15
-
-
0348090400
-
The linear programming approach to approximate dynamic programming
-
D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic programming. Operations Research, 51(6):850-865, 2003.
-
(2003)
Operations Research
, vol.51
, Issue.6
, pp. 850-865
-
-
De Farias, D.P.1
Van Roy, B.2
-
16
-
-
1942421151
-
Bayes meets Bellman: The Gaussian process approach to temporal difference learning
-
Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: the Gaussian process approach to temporal difference learning. In International Conference on Machine Learning, pages 154-161, 2003.
-
(2003)
International Conference on Machine Learning
, pp. 154-161
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
17
-
-
58349096666
-
Proto-transfer learning in Markov decision processes using spectral methods
-
K. Ferguson and S. Mahadevan. Proto-transfer learning in Markov decision processes using spectral methods. In ICML Workshop on Transfer Learning, 2006.
-
(2006)
ICML Workshop on Transfer Learning
-
-
Ferguson, K.1
Mahadevan, S.2
-
19
-
-
0000188120
-
Learning invariance from transformation sequences
-
P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):194-200, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.2
, pp. 194-200
-
-
Földiák, P.1
-
20
-
-
34548412214
-
Slowness and sparseness leads to place, head-direction, and spatial-view cells
-
M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness leads to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166, 2007.
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.8
-
-
Franzius, M.1
Sprekeler, H.2
Wiskott, L.3
-
21
-
-
79958777413
-
The optimal unbiased value estimator and its relation to LSTD, TD and MC
-
S. Grünewälder and K. Obermayer. The optimal unbiased value estimator and its relation to LSTD, TD and MC. Machine Learning, 83:289-330, 2011.
-
(2011)
Machine Learning
, vol.83
, pp. 289-330
-
-
Grünewälder, S.1
Obermayer, K.2
-
24
-
-
14844352327
-
Linear program approximations for factored continuous-state Markov decision processes
-
M. Hauskrecht and B. Kveton. Linear program approximations for factored continuous-state Markov decision processes. In Advances in Neural Information Processing Systems, pages 895-902, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, pp. 895-902
-
-
Hauskrecht, M.1
Kveton, B.2
-
26
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
-
27
-
-
0003419903
-
-
Springer Science+Business Media, 2nd edition
-
H. Holden, B. Øksendal, J. Ubøe, and T. Zhang. Stochastic Partial Differential Equations. Springer Science+Business Media, 2nd edition, 2010.
-
(2010)
Stochastic Partial Differential Equations
-
-
Holden, H.1
Øksendal, B.2
Ubøe, J.3
Zhang, T.4
-
29
-
-
34247562373
-
On the law of large numbers for (geometrically) ergodic Markov chains
-
S. T. Jensen and A. Rahbek. On the law of large numbers for (geometrically) ergodic Markov chains. Economic Theory, 23:761-766, 2007.
-
(2007)
Economic Theory
, vol.23
, pp. 761-766
-
-
Jensen, S.T.1
Rahbek, A.2
-
36
-
-
84867687400
-
Incremental slow feature analysis: Adaptive lowcomplexity slow feature updating from high-dimensional input streams
-
V. R. Kompella, M. D. Luciw, and J. Schmidhuber. Incremental slow feature analysis: adaptive lowcomplexity slow feature updating from high-dimensional input streams. Neural Computation, 24(11):2994-3024, 2012.
-
(2012)
Neural Computation
, vol.24
, Issue.11
, pp. 2994-3024
-
-
Kompella, V.R.1
Luciw, M.D.2
Schmidhuber, J.3
-
40
-
-
78049417739
-
Reinforcement learning on slow features of highdimensional input streams
-
R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement learning on slow features of highdimensional input streams. PLoS Computational Biology, 6(8):e1000894, 2010.
-
(2010)
PLoS Computational Biology
, vol.6
, Issue.8
-
-
Legenstein, R.1
Wilbert, N.2
Wiskott, L.3
-
43
-
-
84867667632
-
Low complexity proto-value function learning from sensory observations with incremental slow feature analysis
-
Springer-Verlag
-
M. Luciw and J. Schmidhuber. Low complexity proto-value function learning from sensory observations with incremental slow feature analysis. In International Conference on Artificial Neural Networks and Machine Learning, volume III, pages 279-287. Springer-Verlag, 2012.
-
(2012)
International Conference on Artificial Neural Networks and Machine Learning
, vol.3
, pp. 279-287
-
-
Luciw, M.1
Schmidhuber, J.2
-
45
-
-
35748957806
-
Proto-value functions: A Laplacian framework for learning representations and control in Markov decision processes
-
S. Mahadevan and M. Maggioni. Proto-value functions: a Laplacian framework for learning representations and control in Markov decision processes. Journal of Machine Learning Research, 8:2169-2231, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2169-2231
-
-
Mahadevan, S.1
Maggioni, M.2
-
47
-
-
55149090494
-
Transfer in variable-reward hierarchical reinforcement learning
-
N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward hierarchical reinforcement learning. Machine Learning, 73:289-312, 2008.
-
(2008)
Machine Learning
, vol.73
, pp. 289-312
-
-
Mehta, N.1
Natarajan, S.2
Tadepalli, P.3
Fern, A.4
-
49
-
-
56449092660
-
An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning
-
R. Parr, L. Li, G. Taylor, C. Painter-Wakefiled, and M. L. Littman. An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In International Conference on Machine Learning, 2008.
-
(2008)
International Conference on Machine Learning
-
-
Parr, R.1
Li, L.2
Taylor, G.3
Painter-Wakefiled, C.4
Littman, M.L.5
-
50
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6, 2(11):559-572, 1901.
-
(1901)
Philosophical Magazine Series 6
, vol.2
, Issue.11
, pp. 559-572
-
-
Pearson, K.1
-
51
-
-
84880899807
-
An analysis of Laplacian methods for value function approximation in MDPs
-
M. Petrik. An analysis of Laplacian methods for value function approximation in MDPs. In International Joint Conference on Artificial Intelligence, pages 2574-2579, 2007.
-
(2007)
International Joint Conference on Artificial Intelligence
, pp. 2574-2579
-
-
Petrik, M.1
-
52
-
-
80555145304
-
Robust approximate bilinear programming for value function approximation
-
M. Petrik and S. Zilberstein. Robust approximate bilinear programming for value function approximation. Journal of Machine Learning Research, 12:3027-3063, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 3027-3063
-
-
Petrik, M.1
Zilberstein, S.2
-
56
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
57
-
-
0000081872
-
Estimating uncertain spatial relationships in robotics
-
Springer-Verlag
-
R. Smith, M. Slef, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In Autonomous Robot Vehicles. Springer-Verlag, 1990.
-
(1990)
Autonomous Robot Vehicles
-
-
Smith, R.1
Slef, M.2
Cheeseman, P.3
-
59
-
-
84861659924
-
Multi-task reinforcement learning: Shaping and feature selection
-
M. Snel and S. Whiteson. Multi-task reinforcement learning: Shaping and feature selection. In European Workshop on Reinforcement Learning, pages 237-248, 2011.
-
(2011)
European Workshop on Reinforcement Learning
, pp. 237-248
-
-
Snel, M.1
Whiteson, S.2
-
61
-
-
84856370602
-
On the relationship of slow feature analysis and Laplacian eigenmaps
-
H. Sprekeler. On the relationship of slow feature analysis and Laplacian eigenmaps. Neural Computation, 23(12):3287-3302, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.12
, pp. 3287-3302
-
-
Sprekeler, H.1
-
62
-
-
80053457849
-
Incremental basis construction from temporal difference error
-
Y. Sun, F. Gomez, M. Ring, and J. Schmidhuber. Incremental basis construction from temporal difference error. In International Conference on Machine Learning, pages 481-488, 2011.
-
(2011)
International Conference on Machine Learning
, pp. 481-488
-
-
Sun, Y.1
Gomez, F.2
Ring, M.3
Schmidhuber, J.4
-
63
-
-
85156221438
-
Generalization in reinforcement learning: Successful examples using sparse coarse coding
-
R. S. Sutton. Generalization in reinforcement learning: successful examples using sparse coarse coding. In Advances in Neural Information Processing Systems, pages 1038-1044, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, pp. 1038-1044
-
-
Sutton, R.S.1
-
65
-
-
68949157375
-
Transfer learning for reinforcement learning domains: A survey
-
M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10:1633-1685, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1633-1685
-
-
Taylor, M.E.1
Stone, P.2
-
66
-
-
0034704229
-
A global framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
68
-
-
0031143730
-
An analysis of temporal-difference learning with function approximation
-
J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42(5):674-690, 1997.
-
(1997)
IEEE Transactions on Automatic Control
, vol.42
, Issue.5
, pp. 674-690
-
-
Tsitsiklis, J.N.1
Van Roy, B.2
-
71
-
-
84883212257
-
Predictively defined representations of state
-
M. Wiering and M. van Otterlo, editors, Springer-Verlag Berlin Heidelberg
-
D. Wingate. Predictively defined representations of state. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, pages 415-439. Springer-Verlag Berlin Heidelberg, 2012.
-
(2012)
Reinforcement Learning: State-of-the-art
, pp. 415-439
-
-
Wingate, D.1
-
72
-
-
60349110114
-
On discovery and learning of models with predictive representations of state for agents with continuous actions and observations
-
D. Wingate and S. P. Singh. On discovery and learning of models with predictive representations of state for agents with continuous actions and observations. In International Joint Conference on Autonomous Agents and Multiagent Systems, pages 1128-1135, 2007.
-
(2007)
International Joint Conference on Autonomous Agents and Multiagent Systems
, pp. 1128-1135
-
-
Wingate, D.1
Singh, S.P.2
-
73
-
-
0041324871
-
Slow feature analysis: A theoretical analysis of optimal free responses
-
L. Wiskott. Slow feature analysis: a theoretical analysis of optimal free responses. Neural Computation, 15(9):2147-2177, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.9
, pp. 2147-2177
-
-
Wiskott, L.1
-
74
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural Computation, 14(4):715-770, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.2
-
75
-
-
33750299109
-
A sparse kernel-based least-squares temporal difference algorithm for reinforcement learning
-
Springer Berlin/Heidelberg
-
X. Xu. A sparse kernel-based least-squares temporal difference algorithm for reinforcement learning. In Advances in Natural Computation, volume 4221 of Lecture Notes in Computer Science, pages 47-56. Springer Berlin/Heidelberg, 2006.
-
(2006)
Advances in Natural Computation, Volume 4221 of Lecture Notes in Computer Science
, pp. 47-56
-
-
Xu, X.1
|