-
3
-
-
0012607033
-
The most probable choice between several discrepant observations and the formation therefrom of the most likely induction, (1777)
-
C.G. Allen
-
D. Bernoulli, The most probable choice between several discrepant observations and the formation therefrom of the most likely induction, (1777), in C.G. Allen, Biometrika 48 (1961), 3-13.
-
(1961)
Biometrika
, vol.48
, pp. 3-13
-
-
Bernoulli, D.1
-
4
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
C.L. Blake and C.J. Merz, UCI Repository of machine learning databases, [http://www.ics.uci.edu/̃mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A.L. Blum, Selection of relevant features and examples in machine learning, Artificial Intelligence 97 (1997), 245-271.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
-
6
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 24 (1996), 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0346786584
-
Arcing classifiers
-
L. Breiman, Arcing classifiers, The Annals of Statistics 26(3) (1998), 801-849.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
9
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
C.K. Chow, On optimum recognition error and reject tradeoff, IEEE Transactions on Information Theory IT-16(1) (1970).
-
(1970)
IEEE Transactions on Information Theory
, vol.IT-16
, Issue.1
-
-
Chow, C.K.1
-
10
-
-
0013326060
-
Feature selection for classification
-
M. Dash and H. Liu, Feature selection for classification, J. Intelligent Data Analysis 1 (1997), 131-156.
-
(1997)
J. Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
12
-
-
0012233326
-
Using SVM for classification in datasets with ambiguous data
-
Orlando, Florida (USA) July
-
S. Hashemi and T.P. Trappenberg, Using SVM for Classification in Datasets with Ambiguous data, The 6th World Multiconference on Systemics, Cybernetics, and Informatics. Orlando, Florida (USA), July, 2002.
-
(2002)
The 6th World Multiconference on Systemics, Cybernetics, and Informatics
-
-
Hashemi, S.1
Trappenberg, T.P.2
-
18
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, 1995.
-
(1995)
IJCAI
-
-
Kohavi, R.1
-
19
-
-
85054435084
-
Neural network ensembles cross-validation and active learning
-
Cambridge, MA MIT Press
-
A. Krogh and J. Vedelsby, Neural network ensembles, cross-validation, and active learning, in Advances in Neural Information Processing Systems 7 (1995), 231-238 Cambridge, MA, MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
20
-
-
0033236296
-
Modern outlier detection methods and their effect on subsequent inference
-
A.M. Millar and D.C. Hamilton, Modern outlier detection methods and their effect on subsequent inference, J. Statist. Comput. Simul. 64 (1999), 125-150.
-
(1999)
J. Statist. Comput. Simul
, vol.64
, pp. 125-150
-
-
Millar, A.M.1
Hamilton, D.C.2
-
23
-
-
0030356238
-
Actively searching for an effective neural-network ensemble
-
D. Opitz and J. Shavlik, Actively searching for an effective neural-network ensemble, Connection Science 8(3/4) (1996), 337-353.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 337-353
-
-
Opitz, D.1
Shavlik, J.2
-
25
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
May
-
R. Schapire, Y. Freund, P. Bartlett and W. Lee, Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods, Annals of Statistics, May, 1998.
-
(1998)
Annals of Statistics
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
26
-
-
84898941932
-
Support vector method for novelty detection
-
B. Scḧolkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J. Platt, Support Vector Method for Novelty Detection, Advances in Neural Information Processing Systems 12 (2000), 582-588.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 582-588
-
-
Scḧolkopf, B.1
Williamson, R.2
Smola, A.3
Shawe-Taylor, J.4
Platt, J.5
|