메뉴 건너뛰기




Volumn , Issue , 2013, Pages 885-892

Benchmarking pareto archiving heuristics in the presence of concept drift: Diversity versus age

Author keywords

Coevo lution; Genetic programming; Online learning; Pareto archiving; Streaming data

Indexed keywords

COEVO-LUTION; FITNESS SHARING; ONLINE LEARNING; PARETO ARCHIVE; PARETO ARCHIVING; RELATIVE CONTRIBUTION; SLIDING WINDOW; STREAMING DATA;

EID: 84883090625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2463372.2463489     Document Type: Conference Paper
Times cited : (7)

References (31)
  • 3
    • 70450080699 scopus 로고    scopus 로고
    • Incremental semi-supervised clustering in a data stream with a flock of agents
    • P. Bruneau, F. Picarougne, and M. Gelgon. Incremental semi-supervised clustering in a data stream with a flock of agents. In IEEE Congress on Evolutionary Computation, pages 3067-3074, 2009.
    • (2009) IEEE Congress on Evolutionary Computation , pp. 3067-3074
    • Bruneau, P.1    Picarougne, F.2    Gelgon, M.3
  • 6
    • 34248162044 scopus 로고    scopus 로고
    • A monolithic archive for pareto-coevolution
    • E. D. de Jong. A monolithic archive for pareto-coevolution. Evolutionary Computation, 15(1):61-93, 2007.
    • (2007) Evolutionary Computation , vol.15 , Issue.1 , pp. 61-93
    • De Jong, E.D.1
  • 11
    • 85008255983 scopus 로고
    • Dynamic training subset selection for supervised learning in genetic programming
    • C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning in genetic programming. In Parallel Problem Solving from Nature, pages 312-321, 1994.
    • (1994) Parallel Problem Solving from Nature , pp. 312-321
    • Gathercole, C.1    Ross, P.2
  • 12
    • 0031648378 scopus 로고    scopus 로고
    • Function optimization in non-stationary environment using steady state genetic algorithms with aging of individuals
    • A. Ghosh, S. Tstutsui, and H. Tanaka. Function optimization in non-stationary environment using steady state genetic algorithms with aging of individuals. In IEEE Congress on Evolutionary Computation, pages 666-671, 1998.
    • (1998) IEEE Congress on Evolutionary Computation , pp. 666-671
    • Ghosh, A.1    Tstutsui, S.2    Tanaka, H.3
  • 15
    • 79951570512 scopus 로고    scopus 로고
    • Master's thesis, Faculty of Computer Science, Dalhousie University
    • M. Lemczyk. Pareto-cevolutionary genetic programming classifier. Master's thesis, Faculty of Computer Science, Dalhousie University, 2006. http://web.cs.dal.ca/~mheywood/Thesis/MCS.html.
    • (2006) Pareto-cevolutionary Genetic Programming Classifier
    • Lemczyk, M.1
  • 16
    • 34548077217 scopus 로고    scopus 로고
    • Pareto-coevolutionary genetic programming for problem decomposition in multi-class classification
    • P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary genetic programming for problem decomposition in multi-class classification. In ACM Genetic and Evolutionary Computation Conference, pages 464-471, 2007.
    • (2007) ACM Genetic and Evolutionary Computation Conference , pp. 464-471
    • Lichodzijewski, P.1    Heywood, M.I.2
  • 19
    • 47249113517 scopus 로고    scopus 로고
    • Cooperative problem decomposition in pareto competitive classifier models of coevolution
    • A. R. McIntyre and M. I. Heywood. Cooperative problem decomposition in pareto competitive classifier models of coevolution. In European Conference on Genetic Programming, pages 289-300, 2008.
    • (2008) European Conference on Genetic Programming , pp. 289-300
    • McIntyre, A.R.1    Heywood, M.I.2
  • 21
    • 2542575116 scopus 로고    scopus 로고
    • Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection
    • J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection. In ACM Genetic and Evolutionary Computation Conference, pages 493-500, 2001.
    • (2001) ACM Genetic and Evolutionary Computation Conference , pp. 493-500
    • Noble, J.1    Watson, R.A.2
  • 25
    • 0031082536 scopus 로고    scopus 로고
    • New methods for competitive coevolution
    • C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evol. Comput., 5(1):1-29, 1997.
    • (1997) Evol. Comput. , vol.5 , Issue.1 , pp. 1-29
    • Rosin, C.D.1    Belew, R.K.2
  • 28
    • 21044433766 scopus 로고    scopus 로고
    • Training genetic programming on half a million patters: An example from anomaly detection
    • S. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic programming on half a million patters: An example from anomaly detection. IEEE Transactions on Evolutionary Computation, 9(3):225-239, 2005.
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 225-239
    • Song, S.1    Heywood, M.I.2    Zincir-Heywood, A.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.