메뉴 건너뛰기




Volumn , Issue , 2008, Pages 363-370

Managing team-based problem solving with symbiotic bid-based genetic programming

Author keywords

Active learning; Classification; Coevolution; Efficiency; Genetic programming; Problem decomposition; Supervised learning; Teaming

Indexed keywords

CLASSIFICATION (OF INFORMATION); EFFICIENCY; GENETIC ALGORITHMS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 57349174964     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1389095.1389162     Document Type: Conference Paper
Times cited : (54)

References (24)
  • 1
    • 3543081432 scopus 로고    scopus 로고
    • Evolving teams of predictors with linear genetic programming
    • M. Brameier and W. Banzhaf. Evolving teams of predictors with linear genetic programming. Genetic Programming and Evolvable Machines, 2(4):381-407, 2001.
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , Issue.4 , pp. 381-407
    • Brameier, M.1    Banzhaf, W.2
  • 5
    • 34248162044 scopus 로고    scopus 로고
    • A monotonic archive for Pareto-coevolution
    • E. D. de Jong. A monotonic archive for Pareto-coevolution. Evolutionary Computation, 15(1):61-93, 2007.
    • (2007) Evolutionary Computation , vol.15 , Issue.1 , pp. 61-93
    • de Jong, E.D.1
  • 6
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 8
    • 38049120100 scopus 로고    scopus 로고
    • Bloat control and generalization pressure using the minimum description length principle for a Pittsburgh approach learning classifier system
    • J. B. J. M. Garrell. Bloat control and generalization pressure using the minimum description length principle for a Pittsburgh approach learning classifier system. Learning Classifier Systems, 4399:59-79, 2007.
    • (2007) Learning Classifier Systems , vol.4399 , pp. 59-79
    • Garrell, J.B.J.M.1
  • 9
    • 0003704318 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Dept. of Information and Comp. Science
    • S. Hettich and S. D. Bay. The UCI KDD Archive [http://kdd/ics/uci/edu]. Irvine, CA: University of California, Dept. of Information and Comp. Science, 1999.
    • (1999) The UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 11
  • 16
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • D. E. Moriarty and R. Miikkulainen. Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation, 5(4):373-399, 1998.
    • (1998) Evolutionary Computation , vol.5 , Issue.4 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 18
    • 2542575116 scopus 로고    scopus 로고
    • Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for Pareto selection
    • J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for Pareto selection. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 493-500, 2001.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference , pp. 493-500
    • Noble, J.1    Watson, R.A.2
  • 21
  • 24
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175, 1995.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.