메뉴 건너뛰기




Volumn 4971 LNCS, Issue , 2008, Pages 289-300

Cooperative problem decomposition in Pareto competitive classifier models of coevolution

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTER GRAPHICS; COMPUTER PROGRAMMING; COST FUNCTIONS; GENETIC ALGORITHMS; LEARNING SYSTEMS; PARETO PRINCIPLE; POPULATION STATISTICS; SOLUTIONS;

EID: 47249113517     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-78671-9_25     Document Type: Conference Paper
Times cited : (11)

References (12)
  • 3
    • 27144540134 scopus 로고    scopus 로고
    • A structure preserving crossover in Grammatical Evolution
    • Harper, R., Blair, A.: A structure preserving crossover in Grammatical Evolution. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2537-2544 (2005)
    • (2005) IEEE Congress on Evolutionary Computation , vol.3 , pp. 2537-2544
    • Harper, R.1    Blair, A.2
  • 4
    • 0036718538 scopus 로고    scopus 로고
    • Improved sampling of the pareto-front in multi-objective genetic optimizations by steady-state evolution
    • Kumar, R., Rockett, P.: Improved sampling of the pareto-front in multi-objective genetic optimizations by steady-state evolution. Evolutionary Computation 10(3), 283-314 (2002)
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 283-314
    • Kumar, R.1    Rockett, P.2
  • 5
    • 34548090813 scopus 로고    scopus 로고
    • Lemczyk, M., Heywood, M.I.: Training binary GP classifiers efficiently: a paretocoevolutionary approach. In: Ebner, M., O'Neill, M., Eḱart, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, 4445, pp. 229-240. Springer, Heidelberg (2007)
    • Lemczyk, M., Heywood, M.I.: Training binary GP classifiers efficiently: a paretocoevolutionary approach. In: Ebner, M., O'Neill, M., Eḱart, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 229-240. Springer, Heidelberg (2007)
  • 7
    • 47249105848 scopus 로고    scopus 로고
    • McIntyre,A.R.: Novelty Detection + Coevolution = Automatic Problem Decomposition: A Framework for Scalable Genetic Programming Classifiers. PhD thesis, Faculty of Computer Science, Dalhousie University (2007), http://www.cs. dal.ca/∼mheywood/Thesis
    • McIntyre,A.R.: Novelty Detection + Coevolution = Automatic Problem Decomposition: A Framework for Scalable Genetic Programming Classifiers. PhD thesis, Faculty of Computer Science, Dalhousie University (2007), http://www.cs. dal.ca/∼mheywood/Thesis
  • 8
    • 40949103072 scopus 로고    scopus 로고
    • Multi-objective competitive coevolution for efficient GP classifier problem decomposition
    • Man, and Cybernetics SMC, pp
    • McIntyre, A.R., Heywood, M.I.: Multi-objective competitive coevolution for efficient GP classifier problem decomposition. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1930-1937 (2007)
    • (2007) Proceedings of the IEEE International Conference on Systems , pp. 1930-1937
    • McIntyre, A.R.1    Heywood, M.I.2
  • 10
    • 2542575116 scopus 로고    scopus 로고
    • Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection
    • Noble, J., Watson, R.: Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 493-500 (2001)
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) , pp. 493-500
    • Noble, J.1    Watson, R.2
  • 12
    • 34548066618 scopus 로고    scopus 로고
    • Yo, T.S., de Jong, E.D.: A comparison of evaluation methods in coevolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). SIGEVO, 1, pp. 479-486 (2007)
    • Yo, T.S., de Jong, E.D.: A comparison of evaluation methods in coevolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). SIGEVO, vol. 1, pp. 479-486 (2007)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.