메뉴 건너뛰기




Volumn 20, Issue 4, 2013, Pages 688-695

Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

Author keywords

[No Author keywords available]

Indexed keywords

CARBOPLATIN; CISPLATIN; CYCLOPHOSPHAMIDE; DOCETAXEL; DOXORUBICIN; LAPATINIB; PACLITAXEL; TRASTUZUMAB;

EID: 84882999508     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2012-001332     Document Type: Article
Times cited : (51)

References (26)
  • 1
    • 0034594628 scopus 로고    scopus 로고
    • New guidelines to evaluate the response to treatment in solid tumors
    • Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205.
    • (2000) J Natl Cancer Inst , vol.92 , pp. 205
    • Therasse, P.1    Arbuck, S.G.2    Eisenhauer, E.A.3
  • 2
    • 0033782203 scopus 로고    scopus 로고
    • Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange
    • Landis CS, Li X, Telang FW, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563-74.
    • (2000) Magn Reson Med , vol.44 , pp. 563-574
    • Landis, C.S.1    Li, X.2    Telang, F.W.3
  • 3
    • 0344305582 scopus 로고    scopus 로고
    • Variation of the relaxographic "shutter-speed" for transcytolemmal water exchange affects the CR bolus-tracking curve shape
    • Yankeelov TE, Rooney WD, Li X, et al. Variation of the relaxographic "shutter-speed" for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 2003;50:1151-69.
    • (2003) Magn Reson Med , vol.50 , pp. 1151-1169
    • Yankeelov, T.E.1    Rooney, W.D.2    Li, X.3
  • 4
    • 3543138424 scopus 로고    scopus 로고
    • Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange
    • Zhou R, Pickup S, Yankeelov TE, et al. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 2004;52:248-57.
    • (2004) Magn Reson Med , vol.52 , pp. 248-257
    • Zhou, R.1    Pickup, S.2    Yankeelov, T.E.3
  • 5
    • 19344365337 scopus 로고    scopus 로고
    • Evaluation of radiological features for breast tumour classification in clinical screening with machine learning methods
    • Nattkemper TW, Arnrich B, Lichte O, et al. Evaluation of radiological features for breast tumour classification in clinical screening with machine learning methods. Artif Intell Med 2005;34:129-39.
    • (2005) Artif Intell Med , vol.34 , pp. 129-139
    • Nattkemper, T.W.1    Arnrich, B.2    Lichte, O.3
  • 6
    • 19044383038 scopus 로고    scopus 로고
    • A study on several Machine-learning methods for classification of malignant and benign clustered microcalcifications
    • Wei L, Yang Y, Nishikawa RM, et al. A study on several Machine-learning methods for classification of malignant and benign clustered microcalcifications. Med Imaging IEEE Trans 2005;24:371-80.
    • (2005) Med Imaging IEEE Trans , vol.24 , pp. 371-380
    • Wei, L.1    Yang, Y.2    Nishikawa, R.M.3
  • 7
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005;34:113-27.
    • (2005) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 8
    • 1842856149 scopus 로고    scopus 로고
    • A combined neural network and decision trees model for prognosis of breast cancer relapse
    • Jerez-Aragonés JM, Gómez-Ruiz JA, Ramos-Jiménez G, et al. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 2003;27:45-63.
    • (2003) Artif Intell Med , vol.27 , pp. 45-63
    • Jerez-Aragonés, J.M.1    Gómez-Ruiz, J.A.2    Ramos-Jiménez, G.3
  • 9
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006;2:59-78.
    • (2006) Cancer Inform , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 10
    • 84883017296 scopus 로고    scopus 로고
    • Analysing PET scans data for predicting response to chemotherapy in breast cancer patients. Twenty-seventh SGAI International Conference on Innovative Techniques and Applications of Artifcial Intelligence, (AI-2007); Springer
    • Richard Ellis, Tony Allen, Miltos Petridis, eds
    • Gyftodimos E, Moss L, Sleeman D, et al. Richard Ellis, Tony Allen, Miltos Petridis, eds. Analysing PET scans data for predicting response to chemotherapy in breast cancer patients. Twenty-seventh SGAI International Conference on Innovative Techniques and Applications of Artifcial Intelligence, (AI-2007); Springer, 2008.
    • (2008)
    • Gyftodimos, E.1    Moss, L.2    Sleeman, D.3
  • 11
    • 84862501734 scopus 로고    scopus 로고
    • Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy-results from ACRIN 6657/I-SPY TRIAL
    • Hylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy-results from ACRIN 6657/I-SPY TRIAL. Radiology 2012;263:663-72.
    • (2012) Radiology , vol.263 , pp. 663-672
    • Hylton, N.M.1    Blume, J.D.2    Bernreuter, W.K.3
  • 12
    • 84855167770 scopus 로고    scopus 로고
    • Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles
    • Mehta S, Hughes NP, Buffa FM, et al. Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles. JNCI Monogr 2011;2011:71-4.
    • (2011) JNCI Monogr , vol.2011 , pp. 71-74
    • Mehta, S.1    Hughes, N.P.2    Buffa, F.M.3
  • 13
    • 38349195021 scopus 로고    scopus 로고
    • Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy
    • Jeruss JS, Mittendorf EA, Tucker SL, et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol 2008;26:246-52.
    • (2008) J Clin Oncol , vol.26 , pp. 246-252
    • Jeruss, J.S.1    Mittendorf, E.A.2    Tucker, S.L.3
  • 14
    • 33749590015 scopus 로고    scopus 로고
    • Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with neoadjuvant chemotherapy for breast cancer
    • Rouzier R, Pusztai L, Garbay JR, et al. Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with neoadjuvant chemotherapy for breast cancer. Cancer 2006;107:1459-66.
    • (2006) Cancer , vol.107 , pp. 1459-1466
    • Rouzier, R.1    Pusztai, L.2    Garbay, J.R.3
  • 15
    • 84882957296 scopus 로고    scopus 로고
    • Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning
    • Bethesda, USA: American Medical Informatics Association
    • Mani S, Chen Y, Arlinghaus LR, et al., eds. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning. Bethesda, USA: American Medical Informatics Association, 2011.
    • (2011)
    • Mani, S.1    Chen, Y.2    Arlinghaus, L.R.3
  • 16
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I: algorithms and empirical evaluation.
    • Aliferis CF, Statnikov A, Tsamardinos I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation. J Mach Learn Res 2010; 11:171-234.
    • (2010) J Mach Learn Res , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3
  • 17
    • 47149084982 scopus 로고    scopus 로고
    • Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials
    • Mallinckrodt CH, Lane PW, Schnell D, et al. Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Inform J 2008;42:303-19.
    • (2008) Drug Inform J , vol.42 , pp. 303-319
    • Mallinckrodt, C.H.1    Lane, P.W.2    Schnell, D.3
  • 18
    • 0031080885 scopus 로고    scopus 로고
    • An evaluation of machine-learning methods for predicting pneumonia mortality
    • Cooper GF, Aliferis CF, Ambrosino R, et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 1997;9:107-38.
    • (1997) Artif Intell Med , vol.9 , pp. 107-138
    • Cooper, G.F.1    Aliferis, C.F.2    Ambrosino, R.3
  • 19
    • 84866514127 scopus 로고    scopus 로고
    • Causal discovery using a bayesian local causal discovery algorithm
    • Mani S, Cooper GF. Causal discovery using a bayesian local causal discovery algorithm. Proceedings of MedInfo; Amsterdam: IOS, 2004:731-5.
    • (2004) Proceedings of MedInfo; Amsterdam: IOS , pp. 731-735
    • Mani, S.1    Cooper, G.F.2
  • 23
    • 77956583100 scopus 로고    scopus 로고
    • Integration of early physiological responses predicts later illness severity in preterm infants
    • Saria S, Rajani AK, Gould J, et al. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med 2010;2:48ra65.
    • (2010) Sci Transl Med , vol.2
    • Saria, S.1    Rajani, A.K.2    Gould, J.3
  • 24
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification Part II: analysis and extensions.
    • Aliferis CF, Statnikov A, Tsamardinos I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: analysis and extensions. J Mach Learn Res 2010;11:235-84.
    • (2010) J Mach Learn Res , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.