-
1
-
-
0034594628
-
New guidelines to evaluate the response to treatment in solid tumors
-
Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205.
-
(2000)
J Natl Cancer Inst
, vol.92
, pp. 205
-
-
Therasse, P.1
Arbuck, S.G.2
Eisenhauer, E.A.3
-
2
-
-
0033782203
-
Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange
-
Landis CS, Li X, Telang FW, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563-74.
-
(2000)
Magn Reson Med
, vol.44
, pp. 563-574
-
-
Landis, C.S.1
Li, X.2
Telang, F.W.3
-
3
-
-
0344305582
-
Variation of the relaxographic "shutter-speed" for transcytolemmal water exchange affects the CR bolus-tracking curve shape
-
Yankeelov TE, Rooney WD, Li X, et al. Variation of the relaxographic "shutter-speed" for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 2003;50:1151-69.
-
(2003)
Magn Reson Med
, vol.50
, pp. 1151-1169
-
-
Yankeelov, T.E.1
Rooney, W.D.2
Li, X.3
-
4
-
-
3543138424
-
Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange
-
Zhou R, Pickup S, Yankeelov TE, et al. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 2004;52:248-57.
-
(2004)
Magn Reson Med
, vol.52
, pp. 248-257
-
-
Zhou, R.1
Pickup, S.2
Yankeelov, T.E.3
-
5
-
-
19344365337
-
Evaluation of radiological features for breast tumour classification in clinical screening with machine learning methods
-
Nattkemper TW, Arnrich B, Lichte O, et al. Evaluation of radiological features for breast tumour classification in clinical screening with machine learning methods. Artif Intell Med 2005;34:129-39.
-
(2005)
Artif Intell Med
, vol.34
, pp. 129-139
-
-
Nattkemper, T.W.1
Arnrich, B.2
Lichte, O.3
-
6
-
-
19044383038
-
A study on several Machine-learning methods for classification of malignant and benign clustered microcalcifications
-
Wei L, Yang Y, Nishikawa RM, et al. A study on several Machine-learning methods for classification of malignant and benign clustered microcalcifications. Med Imaging IEEE Trans 2005;24:371-80.
-
(2005)
Med Imaging IEEE Trans
, vol.24
, pp. 371-380
-
-
Wei, L.1
Yang, Y.2
Nishikawa, R.M.3
-
7
-
-
19344364327
-
Predicting breast cancer survivability: a comparison of three data mining methods
-
Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005;34:113-27.
-
(2005)
Artif Intell Med
, vol.34
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
8
-
-
1842856149
-
A combined neural network and decision trees model for prognosis of breast cancer relapse
-
Jerez-Aragonés JM, Gómez-Ruiz JA, Ramos-Jiménez G, et al. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 2003;27:45-63.
-
(2003)
Artif Intell Med
, vol.27
, pp. 45-63
-
-
Jerez-Aragonés, J.M.1
Gómez-Ruiz, J.A.2
Ramos-Jiménez, G.3
-
9
-
-
33744961676
-
Applications of machine learning in cancer prediction and prognosis
-
Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006;2:59-78.
-
(2006)
Cancer Inform
, vol.2
, pp. 59-78
-
-
Cruz, J.A.1
Wishart, D.S.2
-
10
-
-
84883017296
-
Analysing PET scans data for predicting response to chemotherapy in breast cancer patients. Twenty-seventh SGAI International Conference on Innovative Techniques and Applications of Artifcial Intelligence, (AI-2007); Springer
-
Richard Ellis, Tony Allen, Miltos Petridis, eds
-
Gyftodimos E, Moss L, Sleeman D, et al. Richard Ellis, Tony Allen, Miltos Petridis, eds. Analysing PET scans data for predicting response to chemotherapy in breast cancer patients. Twenty-seventh SGAI International Conference on Innovative Techniques and Applications of Artifcial Intelligence, (AI-2007); Springer, 2008.
-
(2008)
-
-
Gyftodimos, E.1
Moss, L.2
Sleeman, D.3
-
11
-
-
84862501734
-
Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy-results from ACRIN 6657/I-SPY TRIAL
-
Hylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy-results from ACRIN 6657/I-SPY TRIAL. Radiology 2012;263:663-72.
-
(2012)
Radiology
, vol.263
, pp. 663-672
-
-
Hylton, N.M.1
Blume, J.D.2
Bernreuter, W.K.3
-
12
-
-
84855167770
-
Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles
-
Mehta S, Hughes NP, Buffa FM, et al. Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles. JNCI Monogr 2011;2011:71-4.
-
(2011)
JNCI Monogr
, vol.2011
, pp. 71-74
-
-
Mehta, S.1
Hughes, N.P.2
Buffa, F.M.3
-
13
-
-
38349195021
-
Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy
-
Jeruss JS, Mittendorf EA, Tucker SL, et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol 2008;26:246-52.
-
(2008)
J Clin Oncol
, vol.26
, pp. 246-252
-
-
Jeruss, J.S.1
Mittendorf, E.A.2
Tucker, S.L.3
-
14
-
-
33749590015
-
Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with neoadjuvant chemotherapy for breast cancer
-
Rouzier R, Pusztai L, Garbay JR, et al. Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with neoadjuvant chemotherapy for breast cancer. Cancer 2006;107:1459-66.
-
(2006)
Cancer
, vol.107
, pp. 1459-1466
-
-
Rouzier, R.1
Pusztai, L.2
Garbay, J.R.3
-
15
-
-
84882957296
-
Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning
-
Bethesda, USA: American Medical Informatics Association
-
Mani S, Chen Y, Arlinghaus LR, et al., eds. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning. Bethesda, USA: American Medical Informatics Association, 2011.
-
(2011)
-
-
Mani, S.1
Chen, Y.2
Arlinghaus, L.R.3
-
16
-
-
76749137632
-
Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I: algorithms and empirical evaluation.
-
Aliferis CF, Statnikov A, Tsamardinos I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation. J Mach Learn Res 2010; 11:171-234.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
-
17
-
-
47149084982
-
Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials
-
Mallinckrodt CH, Lane PW, Schnell D, et al. Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Inform J 2008;42:303-19.
-
(2008)
Drug Inform J
, vol.42
, pp. 303-319
-
-
Mallinckrodt, C.H.1
Lane, P.W.2
Schnell, D.3
-
18
-
-
0031080885
-
An evaluation of machine-learning methods for predicting pneumonia mortality
-
Cooper GF, Aliferis CF, Ambrosino R, et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 1997;9:107-38.
-
(1997)
Artif Intell Med
, vol.9
, pp. 107-138
-
-
Cooper, G.F.1
Aliferis, C.F.2
Ambrosino, R.3
-
19
-
-
84866514127
-
Causal discovery using a bayesian local causal discovery algorithm
-
Mani S, Cooper GF. Causal discovery using a bayesian local causal discovery algorithm. Proceedings of MedInfo; Amsterdam: IOS, 2004:731-5.
-
(2004)
Proceedings of MedInfo; Amsterdam: IOS
, pp. 731-735
-
-
Mani, S.1
Cooper, G.F.2
-
20
-
-
78649635820
-
Practical feature selection: from correlation to causality
-
Amsterdam: IOS Press, Fogelman-Soulié F, Perrotta D, Piskorski J, Steinberger R.eds
-
Guyon I. Practical feature selection: from correlation to causality. In: Fogelman-Soulié F, Perrotta D, Piskorski J, Steinberger R.eds Mining massive data sets for security: advances in data mining, search, social networks and text mining, and their applications to security. Amsterdam: IOS Press, 2008:27-43.
-
(2008)
Mining massive data sets for security: advances in data mining, search, social networks and text mining, and their applications to security
, pp. 27-43
-
-
Guyon, I.1
-
22
-
-
1642373967
-
-
International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS'03), Las Vegas, USA
-
Aliferis CF, Tsamardinos I, Statnikov A, et al. Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery. International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS'03), Las Vegas, USA, 2003:371-6.
-
(2003)
Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery
, pp. 371-376
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
-
23
-
-
77956583100
-
Integration of early physiological responses predicts later illness severity in preterm infants
-
Saria S, Rajani AK, Gould J, et al. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med 2010;2:48ra65.
-
(2010)
Sci Transl Med
, vol.2
-
-
Saria, S.1
Rajani, A.K.2
Gould, J.3
-
24
-
-
76749122843
-
Local causal and Markov blanket induction for causal discovery and feature selection for classification Part II: analysis and extensions.
-
Aliferis CF, Statnikov A, Tsamardinos I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: analysis and extensions. J Mach Learn Res 2010;11:235-84.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 235-284
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
-
26
-
-
85130930958
-
Causal feature selection
-
Boca Raton, FL, USA: Chapman and Hall/CRC, Liu H, Motoda H.eds
-
Guyon I, Aliferis CF, Elisseeff A. Causal feature selection. In: Liu H, Motoda H.eds Computational methods of feature selection. Boca Raton, FL, USA: Chapman and Hall/CRC, 2008:63-85.
-
(2008)
Computational methods of feature selection
, pp. 63-85
-
-
Guyon, I.1
Aliferis, C.F.2
Elisseeff, A.3
|