메뉴 건너뛰기




Volumn 66, Issue 9, 2013, Pages 1022-1028

Multiple imputation of missing values was not necessary before performing a longitudinal mixed-model analysis

Author keywords

Longitudinal studies; Missing data mechanisms; Missing data patterns; Mixed models; Multiple imputation; Statistical methods

Indexed keywords

ARTICLE; DATA ANALYSIS; LONGITUDINAL STUDY; MIXED MODEL ANALYSIS; MONTE CARLO METHOD; NORMAL DISTRIBUTION; OUTCOME VARIABLE; PRIORITY JOURNAL;

EID: 84882918433     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2013.03.017     Document Type: Article
Times cited : (384)

References (38)
  • 2
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • J.L. Schafer Multiple imputation: a primer Stat Methods Med Res 8 1999 3 15
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 3
    • 34347396774 scopus 로고    scopus 로고
    • Multiple imputation: Current perspectives
    • M.G. Kenward, and J. Carpenter Multiple imputation: current perspectives Stat Methods Med Res 16 2007 199 218
    • (2007) Stat Methods Med Res , vol.16 , pp. 199-218
    • Kenward, M.G.1    Carpenter, J.2
  • 7
    • 0033619152 scopus 로고    scopus 로고
    • On summary measures analysis of the linear mixed effects model for repeated measures when data are not missing completely at random
    • R. Little, and T. Raghunathan On summary measures analysis of the linear mixed effects model for repeated measures when data are not missing completely at random Stat Med 18 1999 2465 2478
    • (1999) Stat Med , vol.18 , pp. 2465-2478
    • Little, R.1    Raghunathan, T.2
  • 8
    • 0033637095 scopus 로고    scopus 로고
    • Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies
    • M. Liu, J.M.G. Taylor, and T.R. Belin Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies Biometrics 56 2000 1157 1163
    • (2000) Biometrics , vol.56 , pp. 1157-1163
    • Liu, M.1    Taylor, J.M.G.2    Belin, T.R.3
  • 9
    • 0035884199 scopus 로고    scopus 로고
    • A multiple imputation strategy for incomplete longitudinal data
    • M.B. Landrum, and M.P. Becker A multiple imputation strategy for incomplete longitudinal data Stat Med 20 2001 2741 2760
    • (2001) Stat Med , vol.20 , pp. 2741-2760
    • Landrum, M.B.1    Becker, M.P.2
  • 11
    • 38849196841 scopus 로고    scopus 로고
    • A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events
    • R.J. Little, M. Yosef, K.C. Cain, B. Nan, and S.D. Harlow A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events Stat Med 27 2008 103 120
    • (2008) Stat Med , vol.27 , pp. 103-120
    • Little, R.J.1    Yosef, M.2    Cain, K.C.3    Nan, B.4    Harlow, S.D.5
  • 12
    • 72849117782 scopus 로고    scopus 로고
    • Missing values in longitudinal dietary data: A multiple imputation approach based on a fully conditional specification
    • J. Nevalainen, M.G. Kenward, and S.M. Virtanen Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification Stat Med 28 2009 3657 3669
    • (2009) Stat Med , vol.28 , pp. 3657-3669
    • Nevalainen, J.1    Kenward, M.G.2    Virtanen, S.M.3
  • 13
    • 0043198343 scopus 로고    scopus 로고
    • Modern statistical methods for handling missing repeated measurements in obesity trial data: Beyond LOCF
    • G.L. Gadbury, C.S. Coffey, and D.B. Allison Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF Obes Rev 4 2003 175 184
    • (2003) Obes Rev , vol.4 , pp. 175-184
    • Gadbury, G.L.1    Coffey, C.S.2    Allison, D.B.3
  • 14
    • 27744601796 scopus 로고    scopus 로고
    • Direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials
    • C. Beunckens, G. Molenberghs, and M.G. Kenward Direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials Clin Trials 2 2005 379
    • (2005) Clin Trials , vol.2 , pp. 379
    • Beunckens, C.1    Molenberghs, G.2    Kenward, M.G.3
  • 15
    • 31944440734 scopus 로고    scopus 로고
    • Analysis of the benefits of a Mediterranean diet in the GISSI-Prevenzione Study: A case study in imputation of missing values from repeated measurements
    • F. Barzi, M. Woodward, R.M. Marfisi, G. Tognoni, and R. Marchioli Analysis of the benefits of a Mediterranean diet in the GISSI-Prevenzione Study: a case study in imputation of missing values from repeated measurements Eur J Epidemiol 21 2006 15 24
    • (2006) Eur J Epidemiol , vol.21 , pp. 15-24
    • Barzi, F.1    Woodward, M.2    Marfisi, R.M.3    Tognoni, G.4    Marchioli, R.5
  • 16
    • 0032954507 scopus 로고    scopus 로고
    • Applications of multiple imputation in medical studies: From AIDS to NHANES
    • J. Barnard, and L. Meng X- Applications of multiple imputation in medical studies: from AIDS to NHANES Stat Methods Med Res 8 1999 17 36
    • (1999) Stat Methods Med Res , vol.8 , pp. 17-36
    • Barnard, J.1    Meng -, X.L.2
  • 17
    • 37849007983 scopus 로고    scopus 로고
    • Handling missing quality of life data in HIV clinical trials: What is practical?
    • D.L. Fairclough, H. Thijs, I.-C. Huang, H.W. Finnern, and A.W. Wu Handling missing quality of life data in HIV clinical trials: what is practical? Qual Life Res 17 2008 61 73
    • (2008) Qual Life Res , vol.17 , pp. 61-73
    • Fairclough, D.L.1    Thijs, H.2    Huang, I.-C.3    Finnern, H.W.4    Wu, A.W.5
  • 18
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: A case study of the children's mental health initiative
    • E.A. Stuart, M. Azur, C. Frangakis, and P. Leaf Multiple imputation with large data sets: a case study of the children's mental health initiative Am J Epidemiol 169 2009 1133 1139
    • (2009) Am J Epidemiol , vol.169 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3    Leaf, P.4
  • 20
    • 3843075419 scopus 로고    scopus 로고
    • Handling drop-out in longitudinal studies
    • J.W. Hogan, J. Roy, and C. Korkontzelou Handling drop-out in longitudinal studies Stat Med 23 2004 1455 1497
    • (2004) Stat Med , vol.23 , pp. 1455-1497
    • Hogan, J.W.1    Roy, J.2    Korkontzelou, C.3
  • 21
    • 24644435545 scopus 로고    scopus 로고
    • Methods to account for attrition in longitudinal data: Do they work? A simulation study
    • V.L. Kristman, M. Manno, and P. Côté Methods to account for attrition in longitudinal data: do they work? A simulation study Eur J Epidemiol 20 2005 657 662
    • (2005) Eur J Epidemiol , vol.20 , pp. 657-662
    • Kristman, V.L.1    Manno, M.2    Côté, P.3
  • 23
    • 33744830564 scopus 로고    scopus 로고
    • Can one assess whether missing data are missing at random in medical studies?
    • R.F. Potthoff, G.E. Tudor, K.S. Pieper, and V. Hasselblad Can one assess whether missing data are missing at random in medical studies? Stat Methods Med Res 15 2006 213 234
    • (2006) Stat Methods Med Res , vol.15 , pp. 213-234
    • Potthoff, R.F.1    Tudor, G.E.2    Pieper, K.S.3    Hasselblad, V.4
  • 25
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • J. Robins, and N. Wang Inference for imputation estimators Biometrika 87 2000 113 124
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.1    Wang, N.2
  • 27
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • J.W. Graham Missing data analysis: making it work in the real world Annu Rev Psychol 60 2009 549 576
    • (2009) Annu Rev Psychol , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 28
    • 20344370565 scopus 로고    scopus 로고
    • Multiple imputation of missing values
    • P. Royston Multiple imputation of missing values Stata J 4 2004 227 241
    • (2004) Stata J , vol.4 , pp. 227-241
    • Royston, P.1
  • 29
    • 68949111980 scopus 로고    scopus 로고
    • Multiple imputation of missing values: New features for mim
    • P. Royston, J.B. Carlin, and I.R. White Multiple imputation of missing values: new features for mim Stata J 2 2009 252 264
    • (2009) Stata J , vol.2 , pp. 252-264
    • Royston, P.1    Carlin, J.B.2    White, I.R.3
  • 30
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • C.A. Bernaards, T.R. Belin, and J.L. Schafer Robustness of a multivariate normal approximation for imputation of incomplete binary data Stat Med 26 2007 1368 1382
    • (2007) Stat Med , vol.26 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 31
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: A simulation assessment
    • H. Demirtas, S.A. Freels, and R.M. Yucel Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: a simulation assessment J Stat Comp Sim 78 2008 69 84
    • (2008) J Stat Comp Sim , vol.78 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 32
    • 70349590221 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables
    • P. Royston Multiple imputation of missing values: further update of ice, with an emphasis on categorical variables Stata J 9 2009 466 477
    • (2009) Stata J , vol.9 , pp. 466-477
    • Royston, P.1
  • 33
    • 45749110814 scopus 로고    scopus 로고
    • Using calibration to improve rounding in imputation
    • R.M. Yucel, Y. He, and A.M. Zaslavsky Using calibration to improve rounding in imputation Am Stat 62 2008 1 5
    • (2008) Am Stat , vol.62 , pp. 1-5
    • Yucel, R.M.1    He, Y.2    Zaslavsky, A.M.3
  • 34
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • R.J.A. Little Pattern-mixture models for multivariate incomplete data J Am Stat Assoc 88 1993 125 134
    • (1993) J Am Stat Assoc , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 35
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • R.J.A. Little A class of pattern-mixture models for normal incomplete data Biometrika 81 1994 471 483
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 36
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • H. Demirtas, and J.L. Schafer On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out Stat Med 22 2003 2553 2575
    • (2003) Stat Med , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 37
    • 47249109100 scopus 로고    scopus 로고
    • Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values
    • X. Yang, J. Li, and S. Shoptaw Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values Stat Med 27 2008 2826 2849
    • (2008) Stat Med , vol.27 , pp. 2826-2849
    • Yang, X.1    Li, J.2    Shoptaw, S.3
  • 38
    • 33845891920 scopus 로고    scopus 로고
    • The design of simulation studies in medical statistics
    • A. Burton, D.G. Altman, P. Royston, and R.L. Holder The design of simulation studies in medical statistics Stat Med 25 2006 4279 4292
    • (2006) Stat Med , vol.25 , pp. 4279-4292
    • Burton, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.