메뉴 건너뛰기




Volumn 27, Issue 15, 2008, Pages 2826-2849

Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values

Author keywords

Intermittent missing values; Markov transition model; Multiple partial imputation; Nonignorable dropout; Pattern mixture model; Selection model

Indexed keywords

CARBON MONOXIDE; METHADONE; NICOTINE PATCH;

EID: 47249109100     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3111     Document Type: Article
Times cited : (24)

References (56)
  • 1
    • 0036775090 scopus 로고    scopus 로고
    • Intention-to-treat' meets 'missing data': Implications of alternate strategies for analyzing clinical trials data
    • Nich C, Carroll KM. 'Intention-to-treat' meets 'missing data': implications of alternate strategies for analyzing clinical trials data. Drug and Alcohol Dependence 2002; 68:121-130.
    • (2002) Drug and Alcohol Dependence , vol.68 , pp. 121-130
    • Nich, C.1    Carroll, K.M.2
  • 2
    • 0028650772 scopus 로고
    • A random effects ordinal regression model for multilevel analysis
    • Hedeker D, Gibbons RD. A random effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944.
    • (1994) Biometrics , vol.50 , pp. 933-944
    • Hedeker, D.1    Gibbons, R.D.2
  • 3
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follmann D, Wu M. An approximate generalized linear model with random effects for informative missing data. Biometrics 1995; 51:151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 4
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 5
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 8
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-582.
    • (1976) Biometrika , vol.63 , pp. 581-582
    • Rubin, D.B.1
  • 9
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky AG, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data.Journal of the American Statistical Association 1995; 90:106-120.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-120
    • Robins, J.M.1    Rotnitzky, A.G.2    Zhao, L.P.3
  • 10
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • Diggle PJ, Kenward MG. Informative drop-out in longitudinal data analysis. Applied Statistics 1994; 43(1):49-93.
    • (1994) Applied Statistics , vol.43 , Issue.1 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 11
    • 34547678497 scopus 로고    scopus 로고
    • Markov transition models for binary repeated measures with ignorable and nonignorable missing values
    • Yang X, Nie K, Belin T, Liu J, Shoptaw S. Markov transition models for binary repeated measures with ignorable and nonignorable missing values. Statistical Methods in Medical Research 2007; 16(4):347-364.
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.4 , pp. 347-364
    • Yang, X.1    Nie, K.2    Belin, T.3    Liu, J.4    Shoptaw, S.5
  • 14
    • 34249036469 scopus 로고    scopus 로고
    • A random-effects Markov transition model for Poisson-distributed repeated measures with nonignorable missing values
    • Li J, Yang X, Wu Y, Shoptaw S. A random-effects Markov transition model for Poisson-distributed repeated measures with nonignorable missing values. Statistics in Medicine 2007; 26(12):2519-2532.
    • (2007) Statistics in Medicine , vol.26 , Issue.12 , pp. 2519-2532
    • Li, J.1    Yang, X.2    Wu, Y.3    Shoptaw, S.4
  • 15
    • 0032885858 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models for incomplete categorical data with covariates
    • Molenberghs G, Michiels B, Lipsitz SR. Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics 1999; 55:978-983.
    • (1999) Biometrics , vol.55 , pp. 978-983
    • Molenberghs, G.1    Michiels, B.2    Lipsitz, S.R.3
  • 16
    • 0033858416 scopus 로고    scopus 로고
    • Modeling longitudinal count data subject to informative dropout
    • Albert PS, Follmann DA. Modeling longitudinal count data subject to informative dropout. Biometrics 2000; 56:667-677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.S.1    Follmann, D.A.2
  • 18
    • 0039982650 scopus 로고    scopus 로고
    • Analysis of longitudinal data with non-ignorable non-monotone missing values
    • Troxel AB, Harrington DP, Lipsitz SR. Analysis of longitudinal data with non-ignorable non-monotone missing values. Applied Statistics 1998; 47:425-438.
    • (1998) Applied Statistics , vol.47 , pp. 425-438
    • Troxel, A.B.1    Harrington, D.P.2    Lipsitz, S.R.3
  • 19
    • 14144252238 scopus 로고    scopus 로고
    • A random effects transition model for longitudinal binary data with informative missingness
    • Albert PS, Follmann DA. A random effects transition model for longitudinal binary data with informative missingness. Statistica Neerlandica 2003; 57:100-111.
    • (2003) Statistica Neerlandica , vol.57 , pp. 100-111
    • Albert, P.S.1    Follmann, D.A.2
  • 20
    • 14144255163 scopus 로고    scopus 로고
    • Assessing missing data assumptions in longitudinal studies: An example using a smoking cessation trial
    • Yang X, Shoptaw S. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Drug and Alcohol Dependence 2005; 77:213-225.
    • (2005) Drug and Alcohol Dependence , vol.77 , pp. 213-225
    • Yang, X.1    Shoptaw, S.2
  • 22
    • 0022966316 scopus 로고
    • Unbalanced repeated measures model with structural covariance matrices
    • Jennrich RI, Schluchter MD. Unbalanced repeated measures model with structural covariance matrices. Biometrics 1986; 42:805-820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 23
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997; 16:239-258.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 24
    • 0023741546 scopus 로고
    • Correcting for the bias caused by drop-outs in hypertension trials
    • Murray GD, Findlay JG. Correcting for the bias caused by drop-outs in hypertension trials. Statistics in Medicine 1988; 7(9):941-946.
    • (1988) Statistics in Medicine , vol.7 , Issue.9 , pp. 941-946
    • Murray, G.D.1    Findlay, J.G.2
  • 25
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
    • Heckman JJ. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 1976; 5:475-492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.J.1
  • 27
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with non-random dropout
    • Molenberghs G, Kenward MG, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84:33-44.
    • (1997) Biometrika , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 28
    • 84950953410 scopus 로고
    • Inference from nonrandomly missing categorical data: An example from a genetic study on Turner's syndrome
    • Nordheim EV. Inference from nonrandomly missing categorical data: an example from a genetic study on Turner's syndrome. Journal of the American Statistical Association 1984; 79:772-780.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 772-780
    • Nordheim, E.V.1
  • 29
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal studies data
    • Kenward MG, Molenberghs G. Parametric models for incomplete continuous and categorical longitudinal studies data. Statistical Methods in Medical Research 1999; 8:51-83.
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 30
    • 0003129721 scopus 로고
    • Selection modeling versus mixture modeling with non-ignorable nonresponse
    • Wainer H ed, Springer: New York
    • Glynn RJ, Laird NM, Rubin DB. Selection modeling versus mixture modeling with non-ignorable nonresponse. In Drawing Inferences from Self Selected Samples, Wainer H (ed.). Springer: New York, 1986; 115-142.
    • (1986) Drawing Inferences from Self Selected Samples , pp. 115-142
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 33
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika 1994; 81:471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 34
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children's obesity data reanalysed using pattern mixture models
    • Ekholm A, Skinner C. The Muscatine children's obesity data reanalysed using pattern mixture models. Applied Statistics 1998; 47:251-263.
    • (1998) Applied Statistics , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 35
    • 0029846947 scopus 로고    scopus 로고
    • Intent-to-treat analysis for incomplete repeated measures
    • Hogan JW, Laird NM. Intent-to-treat analysis for incomplete repeated measures. Biometrics 1996; 52:1002-1007.
    • (1996) Biometrics , vol.52 , pp. 1002-1007
    • Hogan, J.W.1    Laird, N.M.2
  • 38
    • 0036971533 scopus 로고    scopus 로고
    • A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse
    • Birmingham J, Fitzmaurice GM. A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse. Biometrics 2002; 58(4):989-996.
    • (2002) Biometrics , vol.58 , Issue.4 , pp. 989-996
    • Birmingham, J.1    Fitzmaurice, G.M.2
  • 40
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 1988; 44:175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 41
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the pressure of informative right censoring: Conditional linear model
    • Wu MC, Bailey KR. Estimation and comparison of changes in the pressure of informative right censoring: conditional linear model. Biometrics 1989; 45:939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 42
    • 0032930511 scopus 로고    scopus 로고
    • Use of summary measures to adjust for informative missingness in repeated measures data with random effects
    • Wu MC, Follmann DA. Use of summary measures to adjust for informative missingness in repeated measures data with random effects. Biometrics 1999; 55:75-84.
    • (1999) Biometrics , vol.55 , pp. 75-84
    • Wu, M.C.1    Follmann, D.A.2
  • 43
    • 0033936551 scopus 로고    scopus 로고
    • A transitional model for longitudinal binary data subject to nonignorable missing data
    • Albert PS. A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 2000; 56:602-608.
    • (2000) Biometrics , vol.56 , pp. 602-608
    • Albert, P.S.1
  • 44
    • 0032372042 scopus 로고    scopus 로고
    • Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication
    • Pulksteinis EP, Ten Have TR, Landis R. Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 1998; 93:438-450.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 438-450
    • Pulksteinis, E.P.1    Ten Have, T.R.2    Landis, R.3
  • 45
    • 0031944647 scopus 로고    scopus 로고
    • Mixed effects logistic regression models for longitudinal binary repeated response data with informative drop-out
    • Ten Have TR, Kunselman AR, Pulksteinis EP, Landis R. Mixed effects logistic regression models for longitudinal binary repeated response data with informative drop-out. Biometrics 1998; 54:367-383.
    • (1998) Biometrics , vol.54 , pp. 367-383
    • Ten Have, T.R.1    Kunselman, A.R.2    Pulksteinis, E.P.3    Landis, R.4
  • 47
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • Rubin DB, Schenker N. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association 1986; 81:366-374.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 48
    • 0010342144 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Statistics, Harvard University, Cambridge, MA
    • Shen ZJ. Nested multiple imputation. Ph.D. Dissertation, Department of Statistics, Harvard University, Cambridge, MA, 2000.
    • (2000) Nested multiple imputation
    • Shen, Z.J.1
  • 49
    • 33645617067 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Statistics, Pennsylvania State University, University Park, PA
    • Harel O. Strategies for data analysis with two types of missing values. Ph.D. Dissertation, Department of Statistics, Pennsylvania State University, University Park, PA, 2003.
    • (2003) Strategies for data analysis with two types of missing values
    • Harel, O.1
  • 50
    • 0345241817 scopus 로고    scopus 로고
    • Nested multiple imputation of NMES via partially incompatible MCMC
    • Rubin DB. Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica 2003; 57:3-18.
    • (2003) Statistica Neerlandica , vol.57 , pp. 3-18
    • Rubin, D.B.1
  • 53
    • 47249110206 scopus 로고    scopus 로고
    • A hybrid Gibbs sampler for selection models in dealing with outcome-dependent nonignorable dropouts
    • Preprint 451
    • Yang X, Li J. A hybrid Gibbs sampler for selection models in dealing with outcome-dependent nonignorable dropouts. UCLA Statistics Electronic Publications 2005, Preprint 451.
    • (2005) UCLA Statistics Electronic Publications
    • Yang, X.1    Li, J.2
  • 54
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 55
    • 47249166006 scopus 로고    scopus 로고
    • SAS Institute Inc. SAS/STAT* Software Changes and Enhancements, Release 8.2. SAS Institute Inc, 2001
    • SAS Institute Inc. SAS/STAT* Software Changes and Enhancements, Release 8.2. SAS Institute Inc., 2001.
  • 56
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker D, Gibbons RD. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 1997; 2:64-78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.