메뉴 건너뛰기




Volumn 20, Issue 8, 2005, Pages 657-662

Methods to account for attrition in longitudinal data: Do they work? A simulation study

Author keywords

Bias (epidemiology); Cohort studies; Computer simulation; Epidemiologic methods; Logistic models

Indexed keywords

ARTICLE; COMPUTER SIMULATION; COVARIANCE; DATA ANALYSIS; EPIDEMIOLOGICAL DATA; LOGISTIC REGRESSION ANALYSIS; METHODOLOGY; RANDOMIZATION; STANDARD; STATISTICAL MODEL; VALIDATION PROCESS;

EID: 24644435545     PISSN: 03932990     EISSN: 15737284     Source Type: Journal    
DOI: 10.1007/s10654-005-7919-7     Document Type: Article
Times cited : (80)

References (30)
  • 2
    • 0036224591 scopus 로고    scopus 로고
    • Impact of missing data due to selective dropouts in cohort studies and clinical trials
    • G Touloumi SJ Pocock AG Babiker JH Darbyshire 2002 Impact of missing data due to selective dropouts in cohort studies and clinical trials Epidemiology 13 347 355
    • (2002) Epidemiology , vol.13 , pp. 347-355
    • Touloumi, G.1    Pocock, S.J.2    Babiker, A.G.3    Darbyshire, J.H.4
  • 3
    • 0017699840 scopus 로고
    • Response and follow-up bias in cohort studies
    • S Greenland 1977 Response and follow-up bias in cohort studies Am J Epidemiol 106 184 187
    • (1977) Am J Epidemiol , vol.106 , pp. 184-187
    • Greenland, S.1
  • 4
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • JL Schafer JW Graham 2002 Missing data: Our view of the state of the art Psychol Methods 7 147 177
    • (2002) Psychol Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 5
    • 0142011017 scopus 로고    scopus 로고
    • Imputation of missing longitudinal data: A comparison of methods
    • JM Engels P Diehr 2003 Imputation of missing longitudinal data: A comparison of methods J Clin Epidemiol 56 968 976
    • (2003) J Clin Epidemiol , vol.56 , pp. 968-976
    • Engels, J.M.1    Diehr, P.2
  • 6
    • 0032447735 scopus 로고    scopus 로고
    • Assessing the effects of cooperation bias and attrition in behavioral genetic research using data-weighting
    • AC Heath PA Madden NG Martin 1998 Assessing the effects of cooperation bias and attrition in behavioral genetic research using data-weighting Behav Genet 28 415 427
    • (1998) Behav Genet , vol.28 , pp. 415-427
    • Heath, A.C.1    Madden, P.A.2    Martin, N.G.3
  • 7
    • 0035884199 scopus 로고    scopus 로고
    • A multiple imputation strategy for incomplete longitudinal data
    • MB Landrum MP Becker 2001 A multiple imputation strategy for incomplete longitudinal data Stat Med 20 2741 2760
    • (2001) Stat Med , vol.20 , pp. 2741-2760
    • Landrum, M.B.1    Becker, M.P.2
  • 8
  • 9
    • 0028986666 scopus 로고
    • A comparison of analytic methods for non-random missingness of outcome data
    • SL Crawford SL Tennstedt JB McKinlay 1995 A comparison of analytic methods for non-random missingness of outcome data J Clin Epidemiol 48 209 219
    • (1995) J Clin Epidemiol , vol.48 , pp. 209-219
    • Crawford, S.L.1    Tennstedt, S.L.2    McKinlay, J.B.3
  • 10
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • JL Schafer 1999 Multiple imputation: A primer Stat Methods Med Res 8 3 15
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 11
    • 3042807973 scopus 로고    scopus 로고
    • Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies
    • F Barzi M Woodward 2004 Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies Am J Epidemiol 160 34 45
    • (2004) Am J Epidemiol , vol.160 , pp. 34-45
    • Barzi, F.1    Woodward, M.2
  • 12
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • DB Rubin 1996 Multiple imputation after 18+ years J Am Stat Assoc 91 473 489
    • (1996) J Am Stat Assoc , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 14
    • 0028233429 scopus 로고
    • Mortality and cancer rates in nonrespondents to a prospective study of older women: 5-year follow-up
    • KM Bisgard AR Folsom CP Hong TA Sellers 1994 Mortality and cancer rates in nonrespondents to a prospective study of older women: 5-year follow-up Am J Epidemiol 139 990 1000
    • (1994) Am J Epidemiol , vol.139 , pp. 990-1000
    • Bisgard, K.M.1    Folsom, A.R.2    Hong, C.P.3    Sellers, T.A.4
  • 15
    • 0034174221 scopus 로고    scopus 로고
    • Elderly cohort study subjects unable to return for follow-up have lower bone mass than those who can return
    • RR McLean MT Hannan BE Epstein 2000 Elderly cohort study subjects unable to return for follow-up have lower bone mass than those who can return Am J Epidemiol 151 689 692
    • (2000) Am J Epidemiol , vol.151 , pp. 689-692
    • McLean, R.R.1    Hannan, M.T.2    Epstein, B.E.3
  • 16
    • 16544389368 scopus 로고    scopus 로고
    • Loss to follow-up in cohort studies: How much is too much?
    • V Kristman M Manno P Côté 2004 Loss to follow-up in cohort studies: How much is too much? Eur J Epidemiol 19 751 760
    • (2004) Eur J Epidemiol , vol.19 , pp. 751-760
    • Kristman, V.1    Manno, M.2    Côté, P.3
  • 17
    • 0036126816 scopus 로고    scopus 로고
    • Attrition in longitudinal studies: How to deal with missing data
    • J Twisk W de Vente 2002 Attrition in longitudinal studies: How to deal with missing data J Clin Epidemiol 55 329 337
    • (2002) J Clin Epidemiol , vol.55 , pp. 329-337
    • Twisk, J.1    De Vente, W.2
  • 18
    • 12344334715 scopus 로고    scopus 로고
    • An application of a weighting method to adjust for nonresponse in standardized incidence ratio analysis of cohort studies
    • RS Rao AJ Sigurdson MM Doody BI Graubard 2005 An application of a weighting method to adjust for nonresponse in standardized incidence ratio analysis of cohort studies Ann Epidemiol 15 129 136
    • (2005) Ann Epidemiol , vol.15 , pp. 129-136
    • Rao, R.S.1    Sigurdson, A.J.2    Doody, M.M.3    Graubard, B.I.4
  • 19
    • 18244420650 scopus 로고    scopus 로고
    • Impact of correcting for nonresponse by weighting on estimates of alcohol consumption
    • P Makela 2003 Impact of correcting for nonresponse by weighting on estimates of alcohol consumption J Stud Alcohol 64 589 596
    • (2003) J Stud Alcohol , vol.64 , pp. 589-596
    • Makela, P.1
  • 20
    • 2642544089 scopus 로고    scopus 로고
    • An epidemiological study of the magnitude and consequences of work related violence: The Minnesota Nurses' Study
    • SG Gerberich TR Church PM McGovern 2004 An epidemiological study of the magnitude and consequences of work related violence: The Minnesota Nurses' Study Occup Environ Med 61 495 503
    • (2004) Occup Environ Med , vol.61 , pp. 495-503
    • Gerberich, S.G.1    Church, T.R.2    McGovern, P.M.3
  • 22
    • 4444342509 scopus 로고    scopus 로고
    • Multiple imputation for body mass index: Lessons from the Australian Longitudinal Study on Women's Health
    • GD Mishra AJ Dobson 2004 Multiple imputation for body mass index: Lessons from the Australian Longitudinal Study on Women's Health Statist Med 23 3077 3087
    • (2004) Statist Med , vol.23 , pp. 3077-3087
    • Mishra, G.D.1    Dobson, A.J.2
  • 24
    • 0015961271 scopus 로고
    • Two-sample problems for a dichotomous variable with missing data
    • JD Elashoff RM Elashoff 1974 Two-sample problems for a dichotomous variable with missing data Appl Stat 23 26 34
    • (1974) Appl Stat , vol.23 , pp. 26-34
    • Elashoff, J.D.1    Elashoff, R.M.2
  • 25
    • 0004282518 scopus 로고    scopus 로고
    • Cary, NC: SAS Institute
    • SAS Publishing. SAS/STAT User's Guide, Version 8, Volumes 1, 2 and 3. Cary, NC: SAS Institute, 1999
    • (1999) SAS/STAT User's Guide, Version 8 , vol.1-3
  • 27
    • 2942597895 scopus 로고    scopus 로고
    • A method for imputing missing data in longitudinal studies
    • AO Youk RA Stone GM Marsh 2004 A method for imputing missing data in longitudinal studies Ann Epidemiol 14 354 361
    • (2004) Ann Epidemiol , vol.14 , pp. 354-361
    • Youk, A.O.1    Stone, R.A.2    Marsh, G.M.3
  • 28
    • 0037108314 scopus 로고    scopus 로고
    • Use of multiple imputation to correct for nonresponse bias in a survey of urologic symptoms among African-American men
    • JM Taylor KL Cooper JT Wei AV Sarma TE Raghunathan SG Heeringa 2002 Use of multiple imputation to correct for nonresponse bias in a survey of urologic symptoms among African-American men Am J Epidemiol 156 774 782
    • (2002) Am J Epidemiol , vol.156 , pp. 774-782
    • Taylor, J.M.1    Cooper, K.L.2    Wei, J.T.3    Sarma, A.V.4    Raghunathan, T.E.5    Heeringa, S.G.6
  • 29
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • RJA Little 1995 Modeling the drop-out mechanism in repeated-measures studies J Am Stat Assoc 90 1112 1121
    • (1995) J Am Stat Assoc , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 30
    • 0031184508 scopus 로고    scopus 로고
    • The importance of critically interpreting simulation studies
    • G Maldonado S Greenland 1997 The importance of critically interpreting simulation studies Epidemiology 8 453 456
    • (1997) Epidemiology , vol.8 , pp. 453-456
    • Maldonado, G.1    Greenland, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.