메뉴 건너뛰기




Volumn , Issue , 2007, Pages 21-44

Advances in Analysis of Mean and Covariance Structure when Data are Incomplete

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84882542033     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-044452044-9/50005-7     Document Type: Chapter
Times cited : (48)

References (61)
  • 1
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • American Sociological Association, Washington, DC, C. Clogg (Ed.)
    • Allison P.D. Estimation of linear models with incomplete data. Sociological Methodology 1987, 71-103. American Sociological Association, Washington, DC. C. Clogg (Ed.).
    • (1987) Sociological Methodology , pp. 71-103
    • Allison, P.D.1
  • 2
    • 0345475379 scopus 로고    scopus 로고
    • Missing data techniques for structural equation modeling
    • Allison P.D. Missing data techniques for structural equation modeling. Journal of Abnormal Psychology 2003, 112:545-557.
    • (2003) Journal of Abnormal Psychology , vol.112 , pp. 545-557
    • Allison, P.D.1
  • 3
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • Lawrence Erlbaum, New Jersey, G.E. Marcoulides, R.E. Schumacker (Eds.)
    • Arbuckle J.L. Full information estimation in the presence of incomplete data. Advanced Structural Equation Modeling 1996, Lawrence Erlbaum, New Jersey. G.E. Marcoulides, R.E. Schumacker (Eds.).
    • (1996) Advanced Structural Equation Modeling
    • Arbuckle, J.L.1
  • 4
    • 84948983617 scopus 로고
    • Pseudo maximum likelihood estimation of mean and covariance structures with missing data
    • Arminger G., Sobel M.E. Pseudo maximum likelihood estimation of mean and covariance structures with missing data. Journal of the American Statistical Association 1990, 85:195-203.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 195-203
    • Arminger, G.1    Sobel, M.E.2
  • 5
    • 0006505817 scopus 로고
    • Conclusions regarding algorithms for handling incomplete data
    • American Statistical Association
    • Azen S., Van Guilder M. Conclusions regarding algorithms for handling incomplete data. Proceedings of the Statistical Computing Section 1981, 53-56. American Statistical Association.
    • (1981) Proceedings of the Statistical Computing Section , pp. 53-56
    • Azen, S.1    Van Guilder, M.2
  • 6
    • 84882471722 scopus 로고    scopus 로고
    • (In press). EQS for Windows User's Guide.
    • Bentler, P.M., Wu, E.J.C. (In press). EQS for Windows User's Guide.
    • Bentler, P.M.1    Wu, E.J.C.2
  • 7
    • 0033235243 scopus 로고    scopus 로고
    • Factor analysis of multidimensional polytomous item response data suffering from ignorable item nonresponse
    • Bernaards C.A., Sijtsma K. Factor analysis of multidimensional polytomous item response data suffering from ignorable item nonresponse. Multivariate Behavioral Research 1999, 34:277-313.
    • (1999) Multivariate Behavioral Research , vol.34 , pp. 277-313
    • Bernaards, C.A.1    Sijtsma, K.2
  • 8
    • 0034408110 scopus 로고    scopus 로고
    • Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable
    • Bernaards C.A., Sijtsma K. Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable. Multivariate Behavioral Research 2000, 35:321-364.
    • (2000) Multivariate Behavioral Research , vol.35 , pp. 321-364
    • Bernaards, C.A.1    Sijtsma, K.2
  • 9
    • 0001326815 scopus 로고
    • Asymptotic comparison of missing data procedures for estimating factor loadings
    • Brown C.H. Asymptotic comparison of missing data procedures for estimating factor loadings. Psychometrika 1983, 48:269-291.
    • (1983) Psychometrika , vol.48 , pp. 269-291
    • Brown, C.H.1
  • 10
    • 0001342385 scopus 로고
    • A method for estimation of missing values in multivariate data suitable for use with an electronic computer
    • Buck S.F. A method for estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society B 1960, 22:302-306.
    • (1960) Journal of the Royal Statistical Society B , vol.22 , pp. 302-306
    • Buck, S.F.1
  • 12
    • 33745582805 scopus 로고
    • University of California Press, Berkeley, W.J. Dixon (Ed.)
    • BMDP Statistical Software 1988, University of California Press, Berkeley. W.J. Dixon (Ed.).
    • (1988) BMDP Statistical Software
  • 13
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrap (with discussion)
    • Efron B. Missing data, imputation, and the bootstrap (with discussion). Journal of the American Statistical Association 1994, 89:463-479.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 463-479
    • Efron, B.1
  • 14
    • 0035756118 scopus 로고    scopus 로고
    • The impact of non-normality on full information maximum-likelihood estimation for structural equation models with missing data
    • Enders C.K. The impact of non-normality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods 2001, 6:352-370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 15
    • 2642541763 scopus 로고    scopus 로고
    • Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences
    • Enders C.K., Peugh J.L. Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equations Modeling 2004, 11:1-19.
    • (2004) Structural Equations Modeling , vol.11 , pp. 1-19
    • Enders, C.K.1    Peugh, J.L.2
  • 17
    • 0001581342 scopus 로고
    • Estimation for the multiple factor model when data are missing
    • Finkbeiner C. Estimation for the multiple factor model when data are missing. Psychometrika 1979, 44:409-420.
    • (1979) Psychometrika , vol.44 , pp. 409-420
    • Finkbeiner, C.1
  • 18
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data relevant variables to FIML-based structural equations models
    • Graham J.W. Adding missing-data relevant variables to FIML-based structural equations models. Structural Equations Modeling 2003, 10:80-100.
    • (2003) Structural Equations Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 19
    • 0027546329 scopus 로고
    • Evaluating interventions with differential attrition: The importance of non-response mechanism and use of follow-up data
    • Graham J.W., Donaldson S.I. Evaluating interventions with differential attrition: The importance of non-response mechanism and use of follow-up data. Journal of Applied Psychology 1993, 78:119-128.
    • (1993) Journal of Applied Psychology , vol.78 , pp. 119-128
    • Graham, J.W.1    Donaldson, S.I.2
  • 20
    • 0042804165 scopus 로고    scopus 로고
    • An EM algorithm for ML factor analysis with missing data
    • Springer-Verlag, M. Berkane (Ed.)
    • Jamshidian M. An EM algorithm for ML factor analysis with missing data. Latent Variable Modeling and Applications to Causality 1997, 247-258. Springer-Verlag. M. Berkane (Ed.).
    • (1997) Latent Variable Modeling and Applications to Causality , pp. 247-258
    • Jamshidian, M.1
  • 21
    • 1142304590 scopus 로고    scopus 로고
    • On algorithms for restricted maximum likelihood estimation
    • Jamshidiam M. On algorithms for restricted maximum likelihood estimation. Computational Statistics and Data Analysis 2004, 45:137-157.
    • (2004) Computational Statistics and Data Analysis , vol.45 , pp. 137-157
    • Jamshidiam, M.1
  • 22
    • 51749116636 scopus 로고    scopus 로고
    • Strategies for analysis of missing data
    • Sage Publication, M. Hardy, A. Bryman (Eds.)
    • Jamshidian M. Strategies for analysis of missing data. Handbook of Data Analysis 2004, 113-130. Sage Publication. M. Hardy, A. Bryman (Eds.).
    • (2004) Handbook of Data Analysis , pp. 113-130
    • Jamshidian, M.1
  • 23
    • 0033441842 scopus 로고    scopus 로고
    • Using complete data routines for ML estimation of mean and covariance structures with missing data
    • Jamshidian M., Bentler P.M. Using complete data routines for ML estimation of mean and covariance structures with missing data. Journal of Educational and Behavioral Statistics 1999, 24:21-41.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 21-41
    • Jamshidian, M.1    Bentler, P.M.2
  • 27
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward M.G., Molenberghs G. Likelihood based frequentist inference when data are missing at random. Statistical Science 1998, 13:236-247.
    • (1998) Statistical Science , vol.13 , pp. 236-247
    • Kenward, M.G.1    Molenberghs, G.2
  • 28
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • Kim J.O., Curry J. The treatment of missing data in multivariate analysis. Sociological Methods Research 1977, 6:215-240.
    • (1977) Sociological Methods Research , vol.6 , pp. 215-240
    • Kim, J.O.1    Curry, J.2
  • 29
    • 0036999493 scopus 로고    scopus 로고
    • Tests of homogeneity of means and covariance matrices for multivariate incomplete data
    • Kim K.H., Bentler P.M. Tests of homogeneity of means and covariance matrices for multivariate incomplete data. Psychometrika 2002, 67:609-623.
    • (2002) Psychometrika , vol.67 , pp. 609-623
    • Kim, K.H.1    Bentler, P.M.2
  • 30
    • 0036168056 scopus 로고    scopus 로고
    • Estimating the reliability and validity of personal support measures: full information ML estimation with planned incomplete data
    • Kogovsek T., Ferligoj A., Coenders G., Saris W.E. Estimating the reliability and validity of personal support measures: full information ML estimation with planned incomplete data. Social Networks 2002, 24:1-20.
    • (2002) Social Networks , vol.24 , pp. 1-20
    • Kogovsek, T.1    Ferligoj, A.2    Coenders, G.3    Saris, W.E.4
  • 32
    • 0023716933 scopus 로고
    • Missing data in longitudinal-studies
    • Laird N.M. Missing data in longitudinal-studies. Statistics in Medicine 1988, 7:305-315.
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 33
    • 0002644737 scopus 로고
    • Estimation for structural equation models with missing data
    • Lee S.Y. Estimation for structural equation models with missing data. Psychometrika 1986, 51:93-99.
    • (1986) Psychometrika , vol.51 , pp. 93-99
    • Lee, S.Y.1
  • 35
    • 0742323824 scopus 로고    scopus 로고
    • Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data
    • Lee S.-Y., Song X.-Y. Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data. Journal of Classification 2003, 20:221-225.
    • (2003) Journal of Classification , vol.20 , pp. 221-225
    • Lee, S.-Y.1    Song, X.-Y.2
  • 36
    • 0010039215 scopus 로고
    • Analysis of structural equations models with incomplete polytomous data
    • Lee S.Y., Tang M.L. Analysis of structural equations models with incomplete polytomous data. Communications in Statistics-Theory and Methods 1992, 21:213-232.
    • (1992) Communications in Statistics-Theory and Methods , vol.21 , pp. 213-232
    • Lee, S.Y.1    Tang, M.L.2
  • 37
    • 33751234948 scopus 로고    scopus 로고
    • Bayesian analysis of nonlinear structural equation models with nonignorable missing outcome data
    • In press
    • Lee S.Y., Tang N.S. Bayesian analysis of nonlinear structural equation models with nonignorable missing outcome data. Psychometrika 2006, In press.
    • (2006) Psychometrika
    • Lee, S.Y.1    Tang, N.S.2
  • 38
    • 0035998148 scopus 로고    scopus 로고
    • Maximum likelihood estimation of nonlinear structural equation models
    • Lee S.Y., Zhu H.T. Maximum likelihood estimation of nonlinear structural equation models. Psychometrika 2002, 67:189-210.
    • (2002) Psychometrika , vol.67 , pp. 189-210
    • Lee, S.Y.1    Zhu, H.T.2
  • 39
    • 0142169449 scopus 로고    scopus 로고
    • Maximum likelihood estimation of nonlinear structural equation models with ignorable missing data
    • Lee S.-Y., Song X.-Y., Lee J.C.K. Maximum likelihood estimation of nonlinear structural equation models with ignorable missing data. Journal of Educational and Behavioral Statistics 2003, 28:111-134.
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 111-134
    • Lee, S.-Y.1    Song, X.-Y.2    Lee, J.C.K.3
  • 40
    • 84936853890 scopus 로고
    • A test of missing completely at random for multivariate data with missing values
    • Little R.J.A. A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association 1988, 83:1198-1202.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1198-1202
    • Little, R.J.A.1
  • 43
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using EM algorithm
    • Louis T.A. Finding the observed information matrix when using EM algorithm. Journal of the Royal Statistical Society B 1982, 44:226-233.
    • (1982) Journal of the Royal Statistical Society B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 44
    • 0040731105 scopus 로고    scopus 로고
    • Pairwise deletion for missing data in structural equations model: nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes
    • Marsh H.W. Pairwise deletion for missing data in structural equations model: nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes. Structural Equations Modeling 1998, 5:22-36.
    • (1998) Structural Equations Modeling , vol.5 , pp. 22-36
    • Marsh, H.W.1
  • 45
    • 0010038833 scopus 로고
    • A general approach to nonlinear factor analysis
    • McDonald R.P. A general approach to nonlinear factor analysis. Psychometrika 1962, 27:123-157.
    • (1962) Psychometrika , vol.27 , pp. 123-157
    • McDonald, R.P.1
  • 46
    • 0000251971 scopus 로고
    • Maximum likelihood via the ECM algorithm: a general framework
    • Meng X.L., Rubin D.B. Maximum likelihood via the ECM algorithm: a general framework. Biometrika 1993, 80:267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 48
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B., Kaplan D., Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 1987, 52:431-462.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 49
    • 10044290370 scopus 로고    scopus 로고
    • Generalized multilevel structural equation modeling
    • Rabe-Hesketh S., Skrondal A., Pickles A. Generalized multilevel structural equation modeling. Psychometrika 2004, 69:167-190.
    • (2004) Psychometrika , vol.69 , pp. 167-190
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 51
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D.B. Inference and missing data. Biometrika 1976, 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 54
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer J.L., Graham J.W. Missing data: Our view of the state of the art. Psychological Methods 2002, 7:147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 55
    • 4444357775 scopus 로고    scopus 로고
    • Imputation for incomplete high-dimensional multivariate normal data using a common factor model
    • Song J.W., Belin T.R. Imputation for incomplete high-dimensional multivariate normal data using a common factor model. Statistics in Medicine 2004, 23:2827-2843.
    • (2004) Statistics in Medicine , vol.23 , pp. 2827-2843
    • Song, J.W.1    Belin, T.R.2
  • 56
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • Song X.-Y., Lee S.Y. Analysis of structural equation model with ignorable missing continuous and polytomous data. Psychometrika 2002, 67:261-288.
    • (2002) Psychometrika , vol.67 , pp. 261-288
    • Song, X.-Y.1    Lee, S.Y.2
  • 57
    • 0032069216 scopus 로고    scopus 로고
    • Theory and methods for constrained estimation in structural equation models with incomplete data
    • Tang M., Bentler P.M. Theory and methods for constrained estimation in structural equation models with incomplete data. Computational Statistics and Data Analysis 1998, 27:257-270.
    • (1998) Computational Statistics and Data Analysis , vol.27 , pp. 257-270
    • Tang, M.1    Bentler, P.M.2
  • 58
    • 84882546415 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei G.C.G., Tanner M.A. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 1990, 82:805-811.
    • (1990) Journal of the American Statistical Association , vol.82 , pp. 805-811
    • Wei, G.C.G.1    Tanner, M.A.2
  • 60
    • 0034555721 scopus 로고    scopus 로고
    • Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
    • Yuan K.-H., Bentler P.M. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology 2000, 30:167-202.
    • (2000) Sociological Methodology , vol.30 , pp. 167-202
    • Yuan, K.-H.1    Bentler, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.