메뉴 건너뛰기




Volumn 20, Issue 2, 2003, Pages 221-255

Maximum Likelihood Estimation and Model Comparison for Mixtures of Structural Equation Models with Ignorable Missing Data

Author keywords

BIC; Gibbs sampler; MAR missing data; MCEM algorithm; Mixture; Path sampling

Indexed keywords


EID: 0742323824     PISSN: 01764268     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00357-003-0013-5     Document Type: Review
Times cited : (23)

References (36)
  • 1
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • C. C. Clogg (Ed), Washington, D. C: American sociological Association
    • ALLISON, P. D. (1987), Estimation of linear models with incomplete data. In C. C. Clogg (Ed), Sociological Methodology, Washington, D. C: American sociological Association, 71-103.
    • (1987) Sociological Methodology , pp. 71-103
    • Allison, P.D.1
  • 2
    • 0031493025 scopus 로고    scopus 로고
    • Finite mixtures of covariance structure models with regressors
    • ARMINGER, G. & STEIN, P. (1997), Finite mixtures of covariance structure models with regressors. Sociological Methods and Research, 26, 148-182.
    • (1997) Sociological Methods and Research , vol.26 , pp. 148-182
    • Arminger, G.1    Stein, P.2
  • 3
    • 0033236871 scopus 로고    scopus 로고
    • Mixtures of conditional mean- and covariance-structure models
    • ARMINGER, G., STEIN, P. & WITTERBERG (1999), Mixtures of conditional mean- and covariance-structure models. Psychometrika, 64, 475-494.
    • (1999) Psychometrika , vol.64 , pp. 475-494
    • Arminger, G.1    Stein, P.2    Witterberg3
  • 4
    • 0033475053 scopus 로고    scopus 로고
    • Maximum generalized linear model likelihoods with an automated Monte Carlo EM algorithm
    • BOOTH, J. G. & HOBERT, J. P. (1999), Maximum generalized linear model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B, 61, 265-285.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 5
    • 84952094529 scopus 로고
    • Detection of influential observations in linear regression
    • COOK, R. D. (1977), Detection of influential observations in linear regression. Technometrics, 19, 15-18.
    • (1977) Technometrics , vol.19 , pp. 15-18
    • Cook, R.D.1
  • 7
    • 84950964832 scopus 로고
    • An application of the Laplace method to finite mixture distributions
    • CRAWFORD, S. L. (1994), An application of the Laplace method to finite mixture distributions. Journal of the American Statistical Association, 89, 259-267.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 259-267
    • Crawford, S.L.1
  • 10
    • 0032329456 scopus 로고    scopus 로고
    • Fitting multivariate normal mixtures subject to structural equation modeling
    • DOLAN, C. V. & VAN DER MAAS, J. J. L. (1998), Fitting multivariate normal mixtures subject to structural equation modeling. Psychometrika, 63, 227-253.
    • (1998) Psychometrika , vol.63 , pp. 227-253
    • Dolan, C.V.1    Van der Maas, J.J.L.2
  • 11
    • 0001581342 scopus 로고
    • Estimation for the multiple factor models when data are missing
    • FINKBEINER, C. (1979), Estimation for the multiple factor models when data are missing. Psychometrika, 44, 409-420.
    • (1979) Psychometrika , vol.44 , pp. 409-420
    • Finkbeiner, C.1
  • 12
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • GELMAN, A. & MENG, X. L. (1998), Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163-185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 14
    • 0033441842 scopus 로고    scopus 로고
    • Maximum likelihood of mean and covariance structure with missing data using complete data routines
    • JAMSHIDIAM, M. & BENTLER, P. M. (1999), Maximum likelihood of mean and covariance structure with missing data using complete data routines. Journal of Educational and Behavioral Statistics, 24, 21-41.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 21-41
    • Jamshidiam, M.1    Bentler, P.M.2
  • 15
    • 0031287762 scopus 로고    scopus 로고
    • Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity
    • JEDIDI, K., JAGPAL, H. S. & DESARBO, W. S. (1997a), Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39-59.
    • (1997) Marketing Science , vol.16 , pp. 39-59
    • Jedidi, K.1    Jagpal, H.S.2    Desarbo, W.S.3
  • 16
    • 0031528340 scopus 로고    scopus 로고
    • STEMM: A general finite mixture structural equation model
    • JEDIDI, K., JAGPAL, H. S. & DESARBO, W. S. (1997b), STEMM: A general finite mixture structural equation model. Journal of Classification, 14, 23-50
    • (1997) Journal of Classification , vol.14 , pp. 23-50
    • Jedidi, K.1    Jagpal, H.S.2    Desarbo, W.S.3
  • 19
    • 0002644737 scopus 로고
    • Estimation for structural equation models with missing data
    • LEE, S. Y. (1986), Estimation for structural equation models with missing data. Psychometrika, 51, 93-99.
    • (1986) Psychometrika , vol.51 , pp. 93-99
    • Lee, S.Y.1
  • 21
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using EM algorithm
    • LOUIS, T. A. (1982), Finding the observed information matrix when using EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 22
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • MCCULLOCH, C. E. (1994), Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association, 89, 330-335.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 23
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • MENG, X. L. & RUBIN, D. B. (1993), Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 25
    • 0000487096 scopus 로고
    • A Monte Carlo method for high dimensional integration
    • OGATA, Y. (1989), A Monte Carlo method for high dimensional integration. Numer. Math., 55, 137-157.
    • (1989) Numer. Math. , vol.55 , pp. 137-157
    • Ogata, Y.1
  • 26
    • 0002022885 scopus 로고
    • Outliers and influential observations in linear models
    • eds J. M. Bernardo et al. Amsterdam: North Holland
    • PETTIT, L. I. & SMITH, A. F. M. (1985), Outliers and influential observations in linear models. In Bayesian Statistics, 2 (eds J. M. Bernardo et al.), 473-494. Amsterdam: North Holland,
    • (1985) Bayesian Statistics , vol.2 , pp. 473-494
    • Pettit, L.I.1    Smith, A.F.M.2
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978), Estimating the dimension of a model. The Annals of Statist., 6, 461-464.
    • (1978) The Annals of Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 0036012997 scopus 로고    scopus 로고
    • Publication bias and meta-analysis for 2 × 2 tables: An average Markov chain Monte Carlo EM algorithm
    • SHI, J. Q. & COPAS, J. (2002), Publication bias and meta-analysis for 2 × 2 tables: an average Markov chain Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B, 64, 221-236.
    • (2002) Journal of the Royal Statistical Society, Series B , vol.64 , pp. 221-236
    • Shi, J.Q.1    Copas, J.2
  • 30
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • SONG, X. Y. & LEE, S. Y. (2002), Analysis of structural equation model with ignorable missing continuous and polytomous data. Psychometrika, 67, 261-288.
    • (2002) Psychometrika , vol.67 , pp. 261-288
    • Song, X.Y.1    Lee, S.Y.2
  • 31
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • TANNER, M. A. & WONG, W. H. (1987), The calculation of posterior distributions by data augmentation (with discussion). Journal of the American statistical Association, 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 33
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • WEI, G. C. G. & TANNER, M. A. (1990), A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 34
    • 0742299965 scopus 로고
    • WORLD VALUES SURVEY, 1981-1984 AND 1990-1993. Ann Arbor, MI: Institute for Social Research [producer], 1994. Ann Arbon, MI: Interuniversity Consortium for Political and Social Research [distribution], 1994
    • WORLD VALUES SURVEY, 1981-1984 AND 1990-1993. (1994), ICPSR version. Ann Arbor, MI: Institute for Social Research [producer], 1994. Ann Arbon, MI: Interuniversity Consortium for Political and Social Research [distribution], 1994.
    • (1994) ICPSR Version
  • 35
    • 0031488140 scopus 로고    scopus 로고
    • Finite mixtures in confirmatory factor-analysis models
    • YUNG, Y. F. (1997), Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297-330.
    • (1997) Psychometrika , vol.62 , pp. 297-330
    • Yung, Y.F.1
  • 36
    • 0035286078 scopus 로고    scopus 로고
    • A Bayesian analysis of finite mixtures in the LISREL model
    • ZHU, H. T. & LEE S. Y. (2001), A Bayesian analysis of finite mixtures in the LISREL model. Psychometrika, 66, 133-152.
    • (2001) Psychometrika , vol.66 , pp. 133-152
    • Zhu, H.T.1    Lee, S.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.