메뉴 건너뛰기




Volumn 112, Issue 4, 2003, Pages 545-557

Missing Data Techniques for Structural Equation Modeling

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DATA ANALYSIS; LIKEWISE DELETION; MAXIMUM LIKELIHOOD METHOD; MISSING DATA; MULTIPLE IMPUTATION; PAIRWISE DELETION; STATISTICAL MODEL; STATISTICS; STRUCTURAL EQUATION MODELING; THEORETICAL MODEL;

EID: 0345475379     PISSN: 0021843X     EISSN: None     Source Type: Journal    
DOI: 10.1037/0021-843X.112.4.545     Document Type: Article
Times cited : (1028)

References (37)
  • 1
    • 0000828942 scopus 로고
    • Missing observations in multivariate statistics: I. Review of the literature
    • Afifi, A. A., & Elashoff, R. M. (1966). Missing observations in multivariate statistics: I. Review of the literature. Journal of the American Statistical Association, 61, 595-604.
    • (1966) Journal of the American Statistical Association , vol.61 , pp. 595-604
    • Afifi, A.A.1    Elashoff, R.M.2
  • 2
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • C. Clogg (Ed.). Washington. DC: American Sociological Association
    • Allison, P. D. (1987). Estimation of linear models with incomplete data. In C. Clogg (Ed.), Sociological methodology 1987 (pp. 71-103). Washington. DC: American Sociological Association.
    • (1987) Sociological Methodology 1987 , pp. 71-103
    • Allison, P.D.1
  • 3
    • 85027582937 scopus 로고    scopus 로고
    • Allison, P. D. (2000). COMBCHI. Retrieved August 7, 2003, from http://www.ssc.upenn.edu/~allison/combchi.sas
    • (2000) COMBCHI
    • Allison, P.D.1
  • 4
  • 5
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • G. A. Marcoulides & R. E. Schumacker (Eds.). Mahwah, NJ: Erlbaum
    • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243-277). Mahwah, NJ: Erlbaum.
    • (1996) Advanced Structural Equation Modeling: Issues and Techniques , pp. 243-277
    • Arbuckle, J.L.1
  • 6
    • 84937294360 scopus 로고
    • Structural equation models that are nonlinear in latent variables: A least squares estimator
    • P. V. Marsden (Ed.). Boston: Blackwell Publishers
    • Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables: A least squares estimator. In P. V. Marsden (Ed.), Sociological methodology 1995 (pp. 223-251). Boston: Blackwell Publishers.
    • (1995) Sociological Methodology 1995 , pp. 223-251
    • Bollen, K.A.1
  • 8
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 11
    • 0004928597 scopus 로고    scopus 로고
    • A comparison of model- and multiple imputation-based approaches to longitudinal analysis with partial missingness
    • Duncan, T. E., Duncan, S. C., & Li, F. (1998). A comparison of model- and multiple imputation-based approaches to longitudinal analysis with partial missingness. Structural Equation Modeling, 5, 1-21.
    • (1998) Structural Equation Modeling , vol.5 , pp. 1-21
    • Duncan, T.E.1    Duncan, S.C.2    Li, F.3
  • 13
    • 0344178031 scopus 로고
    • Linear regression analysis with missing observations among the independent variables
    • Glasser, M. (1964). Linear regression analysis with missing observations among the independent variables. Journal of the American Statistical Association, 59, 834-844.
    • (1964) Journal of the American Statistical Association , vol.59 , pp. 834-844
    • Glasser, M.1
  • 15
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncated, sample selection and limited dependent variables, and a simple estimator of such models
    • Heckman, J. J. (1976). The common structure of statistical models of truncated, sample selection and limited dependent variables, and a simple estimator of such models. Annals of Economic and Social Measurement, 5, 475-492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.J.1
  • 16
    • 0001720173 scopus 로고    scopus 로고
    • Indicator and stratification methods for missing explanatory variables in multiple linear regression
    • Jones, M. P. (1996). Indicator and stratification methods for missing explanatory variables in multiple linear regression. Journal of the American Statistical Association, 91, 222-230.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 222-230
    • Jones, M.P.1
  • 17
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • Kim, J.-O., & Curry, J. (1977). The treatment of missing data in multivariate analysis. Sociological Methods & Research, 6, 215-240.
    • (1977) Sociological Methods & Research , vol.6 , pp. 215-240
    • Kim, J.-O.1    Curry, J.2
  • 18
    • 0040630186 scopus 로고
    • Significance levels from repeated p-values and multiply imputed data
    • Li, K. H., Meng, X. L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values and multiply imputed data. Statistica Sinica, 1, 65-92.
    • (1991) Statistica Sinica , vol.1 , pp. 65-92
    • Li, K.H.1    Meng, X.L.2    Raghunathan, T.E.3    Rubin, D.B.4
  • 22
    • 70350088268 scopus 로고
    • Maximum likelihood estimation in panel studies with missing data
    • K. F. Schuessler (Ed.). San Francisco: Jossey-Bass
    • Marini, M. M., Olsen, A. R., & Rubin, D. (1979). Maximum likelihood estimation in panel studies with missing data. In K. F. Schuessler (Ed.), Sociological methodology 1980 (pp. 314-357). San Francisco: Jossey-Bass.
    • (1979) Sociological Methodology 1980 , pp. 314-357
    • Marini, M.M.1    Olsen, A.R.2    Rubin, D.3
  • 24
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén, B., Kaplan, K., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 42, 431-462.
    • (1987) Psychometrika , vol.42 , pp. 431-462
    • Muthén, B.1    Kaplan, K.2    Hollis, M.3
  • 25
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey methodology, 27, 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 26
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 31
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2000). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2000) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 32
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 33
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329.
    • (2001) Psychological Methods , vol.6 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 34
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 37
    • 0034555721 scopus 로고    scopus 로고
    • Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
    • M. P. Becker (Ed.). Boston: Blackwell Publishers
    • Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In M. P. Becker (Ed.), Sociological methodology 2000 (pp. 165-200). Boston: Blackwell Publishers.
    • (2000) Sociological Methodology 2000 , pp. 165-200
    • Yuan, K.-H.1    Bentler, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.