-
1
-
-
33847055114
-
How to infer gene networks from expression profiles
-
Bansal, M., Belcastro, V., Ambesi-Impiombato, A., et al. 2007. How to infer gene networks from expression profiles. Molecular Systems Biology 3, 78.
-
(2007)
Molecular Systems Biology
, vol.3
, pp. 78
-
-
Bansal, M.1
Belcastro, V.2
Ambesi-Impiombato, A.3
-
2
-
-
33747813561
-
The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
-
Bonneau, R., Reiss, D.J., Shannon, P., et al. 2006. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology 7, R36.
-
(2006)
Genome Biology
, vol.7
-
-
Bonneau, R.1
Reiss, D.J.2
Shannon, P.3
-
3
-
-
69049120308
-
Near-ideal model selection by l1 minimization
-
Candès, E.J., and Plan, Y. 2009. Near-ideal model selection by l1 minimization. The Annals of Statistics 37, 2145-2177.
-
(2009)
The Annals of Statistics
, vol.37
, pp. 2145-2177
-
-
Candès, E.J.1
Plan, Y.2
-
5
-
-
80054853889
-
Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
-
Demir-Kavuk, O., Kamada, M., Akutsu, T., et al. 2011. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics 12, 412.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 412
-
-
Demir-Kavuk, O.1
Kamada, M.2
Akutsu, T.3
-
6
-
-
2442639332
-
Robust identification of large genetic networks
-
Di Bernardo, D., Gardner, T.S., and Collins, J.J. 2004. Robust identification of large genetic networks. Pacific Symposium on Biocomputing 497, 486-97.
-
(2004)
Pacific Symposium on Biocomputing
, vol.497
, pp. 486-497
-
-
Di Bernardo, D.1
Gardner, T.S.2
Collins, J.J.3
-
7
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
-
Fan, J., and Li, R. 2001. Variable slection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360. (Pubitemid 33695585)
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
8
-
-
84878031768
-
Statistical challenges with high dimensionality: Feature selection in knowledge discovery
-
European Mathematical Society, Madrid, Spain
-
Fan, J., and Li, R. 2006. Statistical challenges with high dimensionality: feature selection in knowledge discovery. In Proceedings of the International Congress of Mathematicians. European Mathematical Society, Madrid, Spain.
-
(2006)
Proceedings of the International Congress of Mathematicians
-
-
Fan, J.1
Li, R.2
-
9
-
-
77949352853
-
A selective overview of variable selection in high dimensional feature space (invited review article)
-
Fan, J., and Lv, J. 2010. A selective overview of variable selection in high dimensional feature space (invited review article). Statistica Sinica 20, 101-148.
-
(2010)
Statistica Sinica
, vol.20
, pp. 101-148
-
-
Fan, J.1
Lv, J.2
-
10
-
-
73949117731
-
Network exploration via the adaptive LASSO and SCAD penalties
-
Fan, J., Feng, Y., and Wu, Y. 2009. Network exploration via the adaptive LASSO and SCAD penalties. The Annals of Applied Statistics 3, 521-541.
-
(2009)
The Annals of Applied Statistics
, vol.3
, pp. 521-541
-
-
Fan, J.1
Feng, Y.2
Wu, Y.3
-
11
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J., Hastie, T., and Tibshirani, R. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software 33, 1-22.
-
(2010)
Journal of Statistical Software
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
0038048325
-
Inferring genetic networks and identifying compound mode of action via expression profiling
-
DOI 10.1126/science.1081900
-
Gardner, T.S., Bernardo, D., Lorenz, D., et al. 2003. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102-105. (Pubitemid 36801571)
-
(2003)
Science
, vol.301
, Issue.5629
, pp. 102-105
-
-
Gardner, T.S.1
Di Bernardo, D.2
Lorenz, D.3
Collins, J.J.4
-
13
-
-
68149164746
-
Reverse engineering of gene regulatory networks: A comparative study
-
EURASIP
-
Hache, H., Lehrach, H., and Herwig, R. 2009a. Reverse engineering of gene regulatory networks: a comparative study. EURASIP Journal on Bioinformatics & Systems Biology, 617281.
-
(2009)
Journal on Bioinformatics & Systems Biology
, pp. 617281
-
-
Hache, H.1
Lehrach, H.2
Herwig, R.3
-
14
-
-
65449134730
-
GeNGe: Systematic generation of gene regulatory networks
-
Hache, H., Wierling, C., Lehrach, H., et al. 2009b. GeNGe: systematic generation of gene regulatory networks. Bioinformatics 25, 1205-1207.
-
(2009)
Bioinformatics
, vol.25
, pp. 1205-1207
-
-
Hache, H.1
Wierling, C.2
Lehrach, H.3
-
15
-
-
70449529712
-
Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives
-
He, F., Balling, R., and Zeng, A.-P. 2009. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. Journal of Biotechnology 144, 190-203.
-
(2009)
Journal of Biotechnology
, vol.144
, pp. 190-203
-
-
He, F.1
Balling, R.2
Zeng, A.-P.3
-
16
-
-
61349180117
-
Gene regulatory network inference: Data integration in dynamic models-A review
-
Hecker, M., Lambeck, S., Toepfer, S., et al. 2009. Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96, 86-103.
-
(2009)
Bio Systems
, vol.96
, pp. 86-103
-
-
Hecker, M.1
Lambeck, S.2
Toepfer, S.3
-
17
-
-
79955562657
-
Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
-
Jörnsten, R., Abenius, T., Kling, T., et al. 2011. Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology 7, 486.
-
(2011)
Molecular Systems Biology
, vol.7
, pp. 486
-
-
Jörnsten, R.1
Abenius, T.2
Kling, T.3
-
18
-
-
66249091244
-
Genetic network identification using convex programming
-
Julius, A., Zavlanos, M., Boyd, S., et al. 2009. Genetic network identification using convex programming. IET Systems Biology, 3, 155-166.
-
(2009)
IET Systems Biology
, vol.3
, pp. 155-166
-
-
Julius, A.1
Zavlanos, M.2
Boyd, S.3
-
19
-
-
79954608624
-
Shrinkage tuning parameter selection in precision matrices estimation
-
Lian, H. 2009. Shrinkage tuning parameter selection in precision matrices estimation. Journal of Statistical Planning and Inference, 141, 2839-2848.
-
(2009)
Journal of Statistical Planning and Inference
, vol.141
, pp. 2839-2848
-
-
Lian, H.1
-
20
-
-
59049085394
-
A network biology approach to aging in yeast
-
Lorenz, D.R., Cantor, C.R., and Collins, J.J. 2009. A network biology approach to aging in yeast. Proceedings of the National Academy of Sciences of the United States of America 106, 1145-1150.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, pp. 1145-1150
-
-
Lorenz, D.R.1
Cantor, C.R.2
Collins, J.J.3
-
21
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
Marbach, D., Prill, R.J., Schaffter, T., et al. 2010. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences of the United States of America 107, 6286-6291.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 6286-6291
-
-
Marbach, D.1
Prill, R.J.2
Schaffter, T.3
-
22
-
-
2942694772
-
Artificial gene networks for objective comparison of analysis algorithms
-
DOI 10.1093/bioinformatics/btg1069
-
Mendes, P., Sha, W., and Ye, K. 2003. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19, ii122-ii129. (Pubitemid 41296648)
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 2
-
-
Mendes, P.1
Sha, W.2
Ye, K.3
-
23
-
-
78650901444
-
Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the DREAM4 challenge
-
Mene'ndez, P., Kourmpetis, Y.A.I., ter Braak, C.J.F., et al. 2010. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge. PloS One 5, e14147.
-
(2010)
PloS One
, vol.5
-
-
Mene'Ndez, P.1
Kourmpetis, Y.A.I.2
Ter Braak, C.J.F.3
-
24
-
-
70349548793
-
Interampatteness - A generic property of biochemical networks
-
Nordling, T.E.M., and Jacobsen, E.W. 2009. Interampatteness - a generic property of biochemical networks. IET Systems Biology, 3, 388.
-
(2009)
IET Systems Biology
, vol.3
, pp. 388
-
-
Nordling, T.E.M.1
Jacobsen, E.W.2
-
25
-
-
79961200389
-
GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
-
Schaffter, T., Marbach, D., and Floreano, D. 2011. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263-2270.
-
(2011)
Bioinformatics
, vol.27
, pp. 2263-2270
-
-
Schaffter, T.1
Marbach, D.2
Floreano, D.3
-
26
-
-
85032762613
-
Model-order selection: A review of information criterion rules
-
Stoica, P., and Selen, Y. 2004. Model-order selection: a review of information criterion rules. IEEE Signal Processing Magazine 21, 36-47.
-
(2004)
IEEE Signal Processing Magazine
, vol.21
, pp. 36-47
-
-
Stoica, P.1
Selen, Y.2
-
27
-
-
84887607007
-
Statistical applications in genetics and molecular biology reverse engineering galactose regulation in yeast through model selection statistical applications
-
Thorsson, V., and Michael, H. 2005. Statistical applications in genetics and molecular biology reverse engineering galactose regulation in yeast through model selection Statistical Applications in Genetics and Molecular Biology 4(1).
-
(2005)
Genetics and Molecular Biology
, vol.4
, Issue.1
-
-
Thorsson, V.1
Michael, H.2
-
29
-
-
34548536572
-
Tuning parameter selectors for the smoothly clipped absolute deviation method
-
DOI 10.1093/biomet/asm053
-
Wang, H., Li, R., and Tsai, C.-L. 2007. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94, 553-568. (Pubitemid 47384250)
-
(2007)
Biometrika
, vol.94
, Issue.3
, pp. 553-568
-
-
Wang, H.1
Li, R.2
Tsai, C.-L.3
|