메뉴 건너뛰기




Volumn 20, Issue 5, 2013, Pages 398-408

Optimal sparsity criteria for network inference

Author keywords

Algorithms; Gene networks; Linear algebra

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; GENE EXPRESSION REGULATION;

EID: 84881569817     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2012.0268     Document Type: Article
Times cited : (14)

References (29)
  • 2
    • 33747813561 scopus 로고    scopus 로고
    • The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau, R., Reiss, D.J., Shannon, P., et al. 2006. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology 7, R36.
    • (2006) Genome Biology , vol.7
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3
  • 3
    • 69049120308 scopus 로고    scopus 로고
    • Near-ideal model selection by l1 minimization
    • Candès, E.J., and Plan, Y. 2009. Near-ideal model selection by l1 minimization. The Annals of Statistics 37, 2145-2177.
    • (2009) The Annals of Statistics , vol.37 , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 5
    • 80054853889 scopus 로고    scopus 로고
    • Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
    • Demir-Kavuk, O., Kamada, M., Akutsu, T., et al. 2011. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics 12, 412.
    • (2011) BMC Bioinformatics , vol.12 , pp. 412
    • Demir-Kavuk, O.1    Kamada, M.2    Akutsu, T.3
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan, J., and Li, R. 2001. Variable slection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 84878031768 scopus 로고    scopus 로고
    • Statistical challenges with high dimensionality: Feature selection in knowledge discovery
    • European Mathematical Society, Madrid, Spain
    • Fan, J., and Li, R. 2006. Statistical challenges with high dimensionality: feature selection in knowledge discovery. In Proceedings of the International Congress of Mathematicians. European Mathematical Society, Madrid, Spain.
    • (2006) Proceedings of the International Congress of Mathematicians
    • Fan, J.1    Li, R.2
  • 9
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space (invited review article)
    • Fan, J., and Lv, J. 2010. A selective overview of variable selection in high dimensional feature space (invited review article). Statistica Sinica 20, 101-148.
    • (2010) Statistica Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 10
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • Fan, J., Feng, Y., and Wu, Y. 2009. Network exploration via the adaptive LASSO and SCAD penalties. The Annals of Applied Statistics 3, 521-541.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., and Tibshirani, R. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software 33, 1-22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • DOI 10.1126/science.1081900
    • Gardner, T.S., Bernardo, D., Lorenz, D., et al. 2003. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102-105. (Pubitemid 36801571)
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 14
    • 65449134730 scopus 로고    scopus 로고
    • GeNGe: Systematic generation of gene regulatory networks
    • Hache, H., Wierling, C., Lehrach, H., et al. 2009b. GeNGe: systematic generation of gene regulatory networks. Bioinformatics 25, 1205-1207.
    • (2009) Bioinformatics , vol.25 , pp. 1205-1207
    • Hache, H.1    Wierling, C.2    Lehrach, H.3
  • 15
    • 70449529712 scopus 로고    scopus 로고
    • Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives
    • He, F., Balling, R., and Zeng, A.-P. 2009. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. Journal of Biotechnology 144, 190-203.
    • (2009) Journal of Biotechnology , vol.144 , pp. 190-203
    • He, F.1    Balling, R.2    Zeng, A.-P.3
  • 16
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-A review
    • Hecker, M., Lambeck, S., Toepfer, S., et al. 2009. Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96, 86-103.
    • (2009) Bio Systems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3
  • 17
    • 79955562657 scopus 로고    scopus 로고
    • Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
    • Jörnsten, R., Abenius, T., Kling, T., et al. 2011. Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology 7, 486.
    • (2011) Molecular Systems Biology , vol.7 , pp. 486
    • Jörnsten, R.1    Abenius, T.2    Kling, T.3
  • 18
    • 66249091244 scopus 로고    scopus 로고
    • Genetic network identification using convex programming
    • Julius, A., Zavlanos, M., Boyd, S., et al. 2009. Genetic network identification using convex programming. IET Systems Biology, 3, 155-166.
    • (2009) IET Systems Biology , vol.3 , pp. 155-166
    • Julius, A.1    Zavlanos, M.2    Boyd, S.3
  • 19
    • 79954608624 scopus 로고    scopus 로고
    • Shrinkage tuning parameter selection in precision matrices estimation
    • Lian, H. 2009. Shrinkage tuning parameter selection in precision matrices estimation. Journal of Statistical Planning and Inference, 141, 2839-2848.
    • (2009) Journal of Statistical Planning and Inference , vol.141 , pp. 2839-2848
    • Lian, H.1
  • 22
    • 2942694772 scopus 로고    scopus 로고
    • Artificial gene networks for objective comparison of analysis algorithms
    • DOI 10.1093/bioinformatics/btg1069
    • Mendes, P., Sha, W., and Ye, K. 2003. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19, ii122-ii129. (Pubitemid 41296648)
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Mendes, P.1    Sha, W.2    Ye, K.3
  • 23
    • 78650901444 scopus 로고    scopus 로고
    • Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the DREAM4 challenge
    • Mene'ndez, P., Kourmpetis, Y.A.I., ter Braak, C.J.F., et al. 2010. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge. PloS One 5, e14147.
    • (2010) PloS One , vol.5
    • Mene'Ndez, P.1    Kourmpetis, Y.A.I.2    Ter Braak, C.J.F.3
  • 24
    • 70349548793 scopus 로고    scopus 로고
    • Interampatteness - A generic property of biochemical networks
    • Nordling, T.E.M., and Jacobsen, E.W. 2009. Interampatteness - a generic property of biochemical networks. IET Systems Biology, 3, 388.
    • (2009) IET Systems Biology , vol.3 , pp. 388
    • Nordling, T.E.M.1    Jacobsen, E.W.2
  • 25
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter, T., Marbach, D., and Floreano, D. 2011. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 26
    • 85032762613 scopus 로고    scopus 로고
    • Model-order selection: A review of information criterion rules
    • Stoica, P., and Selen, Y. 2004. Model-order selection: a review of information criterion rules. IEEE Signal Processing Magazine 21, 36-47.
    • (2004) IEEE Signal Processing Magazine , vol.21 , pp. 36-47
    • Stoica, P.1    Selen, Y.2
  • 27
    • 84887607007 scopus 로고    scopus 로고
    • Statistical applications in genetics and molecular biology reverse engineering galactose regulation in yeast through model selection statistical applications
    • Thorsson, V., and Michael, H. 2005. Statistical applications in genetics and molecular biology reverse engineering galactose regulation in yeast through model selection Statistical Applications in Genetics and Molecular Biology 4(1).
    • (2005) Genetics and Molecular Biology , vol.4 , Issue.1
    • Thorsson, V.1    Michael, H.2
  • 29
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • DOI 10.1093/biomet/asm053
    • Wang, H., Li, R., and Tsai, C.-L. 2007. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94, 553-568. (Pubitemid 47384250)
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.