메뉴 건너뛰기




Volumn 83, Issue , 2013, Pages 262-287

A switching multi-scale dynamical network model of EEG/MEG

Author keywords

Clustering; Dynamical Causal Models; Electromagnetic tomography; Inverse problem; Negative Free Energy; Source localisation; State space models; Variational Bayes

Indexed keywords

ARTICLE; BAYES THEOREM; BRAIN FUNCTION; COGNITION; COMPUTER ANALYSIS; CONNECTOME; CONTROLLED STUDY; DYNAMICAL CAUSAL NETWORK; DYNAMICS; ELECTROENCEPHALOGRAM; HUMAN; MAGNETOENCEPHALOGRAPHY; MATHEMATICAL MODEL; MODEL; PRIORITY JOURNAL; PROBABILISTIC GENERATIVE MODEL; SENSITIVITY AND SPECIFICITY; SIMULATION; SWITCHING MESOSTATE SPACE MODEL; ACTION POTENTIAL; ALGORITHM; AUTOMATED PATTERN RECOGNITION; BIOLOGICAL MODEL; BRAIN; BRAIN MAPPING; COMPUTER SIMULATION; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; PROCEDURES; SIGNAL PROCESSING; STATISTICAL MODEL;

EID: 84881511078     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.04.046     Document Type: Article
Times cited : (23)

References (72)
  • 1
    • 51649182225 scopus 로고
    • Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes
    • Akaike H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Ann. Inst. Stat. Math. 1974, 26:363-387.
    • (1974) Ann. Inst. Stat. Math. , vol.26 , pp. 363-387
    • Akaike, H.1
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Attias H. A variational Bayesian framework for graphical models. Adv. Neural Inf. Process. Syst. 2000, 12:209-215.
    • (2000) Adv. Neural Inf. Process. Syst. , vol.12 , pp. 209-215
    • Attias, H.1
  • 3
    • 58049218859 scopus 로고    scopus 로고
    • Variational Bayesian blind deconvolution using a total variation prior
    • Babacan S.D., Molina R., Katsaggelos A.K. Variational Bayesian blind deconvolution using a total variation prior. IEEE Trans. Image Process. 2009, 18:12-26.
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 12-26
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 4
    • 0030967177 scopus 로고    scopus 로고
    • A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem
    • Baillet S., Garnero L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. Biomed. Eng., IEEE 1997, 44:374-385.
    • (1997) Biomed. Eng., IEEE , vol.44 , pp. 374-385
    • Baillet, S.1    Garnero, L.2
  • 5
    • 61349094706 scopus 로고    scopus 로고
    • Parsing pain perception between nociceptive representation and magnitude estimation
    • Baliki M.N., Geha P.Y., Apkarian A.V. Parsing pain perception between nociceptive representation and magnitude estimation. J. Neurophysiol. 2009, 101:875-887.
    • (2009) J. Neurophysiol. , vol.101 , pp. 875-887
    • Baliki, M.N.1    Geha, P.Y.2    Apkarian, A.V.3
  • 8
    • 33745960327 scopus 로고    scopus 로고
    • The variational Kalman smoother
    • Beal M.J., Ghahramani Z. The variational Kalman smoother. Neural Comput. 2002, 14:2647-2692.
    • (2002) Neural Comput. , vol.14 , pp. 2647-2692
    • Beal, M.J.1    Ghahramani, Z.2
  • 11
    • 40049087657 scopus 로고    scopus 로고
    • Modulation of pain ratings by expectation and uncertainty: behavioral characteristics and anticipatory neural correlates
    • Brown C., Seymour B., Boyle Y., El-Deredy W., Jones A. Modulation of pain ratings by expectation and uncertainty: behavioral characteristics and anticipatory neural correlates. Pain 2008, 135:240-250.
    • (2008) Pain , vol.135 , pp. 240-250
    • Brown, C.1    Seymour, B.2    Boyle, Y.3    El-Deredy, W.4    Jones, A.5
  • 12
    • 0037197958 scopus 로고    scopus 로고
    • Hidden Markov based autoregressive analysis of stationary and non-stationary electrophysiological signals for functional coupling studies
    • Cassidy M.J., Brown P. Hidden Markov based autoregressive analysis of stationary and non-stationary electrophysiological signals for functional coupling studies. J. Neurosci. Methods 2002, 116:35-53.
    • (2002) J. Neurosci. Methods , vol.116 , pp. 35-53
    • Cassidy, M.J.1    Brown, P.2
  • 14
    • 0027230029 scopus 로고
    • Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
    • Dale A.M., Sereno M.I. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn. Neurosci. 1993, 5:162-176.
    • (1993) J. Cogn. Neurosci. , vol.5 , pp. 162-176
    • Dale, A.M.1    Sereno, M.I.2
  • 15
    • 34548777514 scopus 로고    scopus 로고
    • A mesostate-space model for EEG and MEG
    • Daunizeau J., Friston K.J. A mesostate-space model for EEG and MEG. NeuroImage 2007, 38:67-81.
    • (2007) NeuroImage , vol.38 , pp. 67-81
    • Daunizeau, J.1    Friston, K.J.2
  • 16
    • 33344457875 scopus 로고    scopus 로고
    • Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models
    • Daunizeau J., Mattout J., Clonda D., Goulard B., Benali H., Lina J.-M. Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models. IEEE Trans. Biomed. Eng. 2006, 53:503-516.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 503-516
    • Daunizeau, J.1    Mattout, J.2    Clonda, D.3    Goulard, B.4    Benali, H.5    Lina, J.-M.6
  • 17
    • 67449088995 scopus 로고    scopus 로고
    • Dynamic causal modelling of distributed electromagnetic responses
    • Daunizeau J., Kiebel S.J., Friston K.J. Dynamic causal modelling of distributed electromagnetic responses. NeuroImage 2009, 47:590-601.
    • (2009) NeuroImage , vol.47 , pp. 590-601
    • Daunizeau, J.1    Kiebel, S.J.2    Friston, K.J.3
  • 19
    • 0000585669 scopus 로고
    • The potential distribution in a layered anisotropic spheroidal volume conductor
    • De Munck J.C. The potential distribution in a layered anisotropic spheroidal volume conductor. J. Appl. Phys. 1988, 64:464.
    • (1988) J. Appl. Phys. , vol.64 , pp. 464
    • De Munck, J.C.1
  • 20
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of resting-state activity in the brain
    • Deco G., Jirsa V.K., McIntosh A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011, 12:43-56.
    • (2011) Nat. Rev. Neurosci. , vol.12 , pp. 43-56
    • Deco, G.1    Jirsa, V.K.2    McIntosh, A.R.3
  • 21
    • 0031398660 scopus 로고    scopus 로고
    • Defining epileptogenic foci: past, present, future
    • Ebersole J.S. Defining epileptogenic foci: past, present, future. J. Clin. Neurophysiol. 1997, 14:470-483.
    • (1997) J. Clin. Neurophysiol. , vol.14 , pp. 470-483
    • Ebersole, J.S.1
  • 22
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27:861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 23
    • 0001396562 scopus 로고
    • Forecasting probability densities by using hidden markov models with mixed states
    • Addison Wesley, A. Weigend, N. Gershenfeld (Eds.)
    • Fraser A., Dimitriadis A. Forecasting probability densities by using hidden markov models with mixed states. Time Series Prediction: Forecasting the Future and Understanding the Past 1993, 265-282. Addison Wesley. A. Weigend, N. Gershenfeld (Eds.).
    • (1993) Time Series Prediction: Forecasting the Future and Understanding the Past , pp. 265-282
    • Fraser, A.1    Dimitriadis, A.2
  • 24
    • 80051779591 scopus 로고    scopus 로고
    • Dynamic causal modeling and Granger causality comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • Friston K. Dynamic causal modeling and Granger causality comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage 2011, 58:303-305.
    • (2011) NeuroImage , vol.58 , pp. 303-305
    • Friston, K.1
  • 25
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • Friston K.J., Penny W. Posterior probability maps and SPMs. NeuroImage 2003, 19:1240-1249.
    • (2003) NeuroImage , vol.19 , pp. 1240-1249
    • Friston, K.J.1    Penny, W.2
  • 28
    • 8844230292 scopus 로고    scopus 로고
    • GARCH modelling of covariance in dynamical estimation of inverse solutions
    • Galka A., Yamashita O., Ozaki T. GARCH modelling of covariance in dynamical estimation of inverse solutions. Phys. Lett. A 2004, 333:261-268.
    • (2004) Phys. Lett. A , vol.333 , pp. 261-268
    • Galka, A.1    Yamashita, O.2    Ozaki, T.3
  • 29
    • 5644287341 scopus 로고    scopus 로고
    • A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering
    • Galka A., Yamashita O., Ozaki T., Biscay R., Valdés-Sosa P.A. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage 2004, 23:435-453.
    • (2004) NeuroImage , vol.23 , pp. 435-453
    • Galka, A.1    Yamashita, O.2    Ozaki, T.3    Biscay, R.4    Valdés-Sosa, P.A.5
  • 30
    • 45449086452 scopus 로고    scopus 로고
    • A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation
    • Galka A., Ozaki T., Muhle H., Stephani U., Siniatchkin M. A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cogn. Neurodyn. 2008, 2:101-113.
    • (2008) Cogn. Neurodyn. , vol.2 , pp. 101-113
    • Galka, A.1    Ozaki, T.2    Muhle, H.3    Stephani, U.4    Siniatchkin, M.5
  • 32
    • 33646338383 scopus 로고    scopus 로고
    • Graphical models and variational methods
    • MIT Press, Massachusets, USA, M. Opper, D. Saad (Eds.)
    • Ghahramani Z., Beal M. Graphical models and variational methods. Advanced Mean Field Method-Theory and Practice 2000, 37-50. MIT Press, Massachusets, USA. M. Opper, D. Saad (Eds.).
    • (2000) Advanced Mean Field Method-Theory and Practice , pp. 37-50
    • Ghahramani, Z.1    Beal, M.2
  • 33
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • MIT Press, Cambridge, Massachusetts, T.K. Leen, V. Dietterich, V. Tresp (Eds.)
    • Ghahramani Z., Beal M.J. Propagation algorithms for variational Bayesian learning. Advances in Neural Information Processing Systems 2001, 13:507-513. MIT Press, Cambridge, Massachusetts. T.K. Leen, V. Dietterich, V. Tresp (Eds.).
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 34
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Ghahramani Z., Hinton G.E. Variational learning for switching state-space models. Neural Comput. 2000, 12:831-864.
    • (2000) Neural Comput. , vol.12 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 35
    • 0141535207 scopus 로고    scopus 로고
    • Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density
    • Gomez C., Marco J., Grau C. Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. NeuroImage 2003, 20:216-224.
    • (2003) NeuroImage , vol.20 , pp. 216-224
    • Gomez, C.1    Marco, J.2    Grau, C.3
  • 36
    • 31044453833 scopus 로고    scopus 로고
    • Evaluation of EEG localization methods using realistic simulations of interictal spikes
    • Grova C., Daunizeau J., Lina J.-M., Bénar C.G., Benali H., Gotman J. Evaluation of EEG localization methods using realistic simulations of interictal spikes. NeuroImage 2006, 29:734-753.
    • (2006) NeuroImage , vol.29 , pp. 734-753
    • Grova, C.1    Daunizeau, J.2    Lina, J.-M.3    Bénar, C.G.4    Benali, H.5    Gotman, J.6
  • 37
    • 0028219609 scopus 로고
    • Interpreting magnetic fields of the brain: minimum norm estimates
    • Hämäläinen M.S., Ilmoniemi R.J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 1994, 32:35-42.
    • (1994) Med. Biol. Eng. Comput. , vol.32 , pp. 35-42
    • Hämäläinen, M.S.1    Ilmoniemi, R.J.2
  • 38
    • 0042178307 scopus 로고    scopus 로고
    • Multivariate autoregressive modeling of fMRI time series
    • Harrison L.M., Penny W.D., Friston K.J. Multivariate autoregressive modeling of fMRI time series. NeuroImage 2003, 19:1477-1491.
    • (2003) NeuroImage , vol.19 , pp. 1477-1491
    • Harrison, L.M.1    Penny, W.D.2    Friston, K.J.3
  • 39
    • 33646137121 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization
    • Kiebel S.J., David O., Friston K.J. Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage 2006, 30:1273-1284.
    • (2006) NeuroImage , vol.30 , pp. 1273-1284
    • Kiebel, S.J.1    David, O.2    Friston, K.J.3
  • 40
    • 34248176808 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses: the role of intrinsic connections
    • Kiebel S.J., Garrido M.I., Friston K.J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. NeuroImage 2007, 36:332-345.
    • (2007) NeuroImage , vol.36 , pp. 332-345
    • Kiebel, S.J.1    Garrido, M.I.2    Friston, K.J.3
  • 41
    • 0002634803 scopus 로고
    • Dynamic linear models with Markov-switching
    • Kim C. Dynamic linear models with Markov-switching. J. Econ. 1994, 60:1-22.
    • (1994) J. Econ. , vol.60 , pp. 1-22
    • Kim, C.1
  • 42
    • 28844433888 scopus 로고    scopus 로고
    • Functional MRI as a constraint in multi-dipole models of MEG data
    • Korvenoja A., Aronen H. Functional MRI as a constraint in multi-dipole models of MEG data. Int. J. Bioelectrom. 2001, 3.
    • (2001) Int. J. Bioelectrom. , vol.3
    • Korvenoja, A.1    Aronen, H.2
  • 44
    • 70349966235 scopus 로고    scopus 로고
    • Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis
    • Lehmann D., Pascual-Marqui R.D., Strik W.K., Koenig T. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. NeuroImage 2010, 49:1073-1079.
    • (2010) NeuroImage , vol.49 , pp. 1073-1079
    • Lehmann, D.1    Pascual-Marqui, R.D.2    Strik, W.K.3    Koenig, T.4
  • 48
    • 33745728128 scopus 로고    scopus 로고
    • Analysis of synchrony demonstrates "pain networks" defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures
    • Ohara S., Crone N.E., Weiss N., Lenz F.A. Analysis of synchrony demonstrates "pain networks" defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 2006, 123:244-253.
    • (2006) Pain , vol.123 , pp. 244-253
    • Ohara, S.1    Crone, N.E.2    Weiss, N.3    Lenz, F.A.4
  • 49
    • 57649195443 scopus 로고    scopus 로고
    • A distributed spatio-temporal EEG/MEG inverse solver
    • Ou W., Hämäläinen M.S., Golland P. A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 2009, 44:932-946.
    • (2009) NeuroImage , vol.44 , pp. 932-946
    • Ou, W.1    Hämäläinen, M.S.2    Golland, P.3
  • 50
    • 0027998259 scopus 로고
    • Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
    • Pascual-Marqui R.D., Michel C.M., Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18:49-65.
    • (1994) Int. J. Psychophysiol. , vol.18 , pp. 49-65
    • Pascual-Marqui, R.D.1    Michel, C.M.2    Lehmann, D.3
  • 51
    • 0029329216 scopus 로고
    • Segmentation of brain electrical activity into microstates: model estimation and validation
    • Pascual-Marqui R.D., Michel C.M., Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans. Biomed. Eng. 1995, 42:658-665.
    • (1995) IEEE Trans. Biomed. Eng. , vol.42 , pp. 658-665
    • Pascual-Marqui, R.D.1    Michel, C.M.2    Lehmann, D.3
  • 52
    • 0036338394 scopus 로고    scopus 로고
    • Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints
    • Phillips C., Rugg M.D., Friston K.J. Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. NeuroImage 2002, 16:678-695.
    • (2002) NeuroImage , vol.16 , pp. 678-695
    • Phillips, C.1    Rugg, M.D.2    Friston, K.J.3
  • 54
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., Fawcett T. Robust classification for imprecise environments. Mach. Learn. 2001, 42:203-231.
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 55
    • 80051780742 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • Roebroeck A., Formisano E., Goebel R. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage 2011, 58:296-302.
    • (2011) NeuroImage , vol.58 , pp. 296-302
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 56
    • 80051783686 scopus 로고    scopus 로고
    • Reply to Friston and David after comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • Roebroeck A., Formisano E., Goebel R. Reply to Friston and David after comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage 2011, 58:310-311.
    • (2011) NeuroImage , vol.58 , pp. 310-311
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 57
    • 0014444435 scopus 로고
    • EEG electrode sensitivity-an application of reciprocity
    • BME-16
    • Rush S., Driscoll D.A. EEG electrode sensitivity-an application of reciprocity. IEEE Trans. Biomed. Eng. 1969, BME-16:15-22.
    • (1969) IEEE Trans. Biomed. Eng. , pp. 15-22
    • Rush, S.1    Driscoll, D.A.2
  • 59
    • 84950419507 scopus 로고
    • Dynamic linear models with switching
    • Shumway R., Stoffer D. Dynamic linear models with switching. J. Am. Stat. Assoc. 1991, 86:763-769.
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 763-769
    • Shumway, R.1    Stoffer, D.2
  • 60
    • 84863879795 scopus 로고    scopus 로고
    • Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state
    • Sotero R.C., Shmuel A. Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state. J. Comput. Neurosci. 2012, 32:563-576.
    • (2012) J. Comput. Neurosci. , vol.32 , pp. 563-576
    • Sotero, R.C.1    Shmuel, A.2
  • 61
    • 78650956105 scopus 로고    scopus 로고
    • Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials
    • Sotero R., Bortel A., Martínez-Cancino R., Neupane S., O'Connor P., Carbonell F., Shmuel A. Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials. J. Integr. Neurosci. 2010, 9:355-379.
    • (2010) J. Integr. Neurosci. , vol.9 , pp. 355-379
    • Sotero, R.1    Bortel, A.2    Martínez-Cancino, R.3    Neupane, S.4    O'Connor, P.5    Carbonell, F.6    Shmuel, A.7
  • 63
    • 36148991430 scopus 로고    scopus 로고
    • Bayesian M/EEG source reconstruction with spatio-temporal priors
    • Trujillo-Barreto N.J., Aubert-Vázquez E., Penny W.D. Bayesian M/EEG source reconstruction with spatio-temporal priors. NeuroImage 2008, 39:318-335.
    • (2008) NeuroImage , vol.39 , pp. 318-335
    • Trujillo-Barreto, N.J.1    Aubert-Vázquez, E.2    Penny, W.D.3
  • 65
    • 80051795744 scopus 로고    scopus 로고
    • Effective connectivity: influence, causality and biophysical modeling
    • Valdés-Sosa P.A., Roebroeck A., Daunizeau J., Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage 2011, 58:339-361.
    • (2011) NeuroImage , vol.58 , pp. 339-361
    • Valdés-Sosa, P.A.1    Roebroeck, A.2    Daunizeau, J.3    Friston, K.4
  • 67
    • 34047181172 scopus 로고    scopus 로고
    • FMRI-constrained dipole fits and current density reconstructions
    • Wagner M., Fuchs M., Kastner J. fMRI-constrained dipole fits and current density reconstructions. Proc. Biomag2000 2000.
    • (2000) Proc. Biomag2000
    • Wagner, M.1    Fuchs, M.2    Kastner, J.3
  • 68
    • 51649114808 scopus 로고    scopus 로고
    • Anticipation of pain enhances the nociceptive transmission and functional connectivity within pain network in rats
    • Wang J.-Y., Zhang H.-T., Chang J.-Y., Woodward D.J., Baccalá L.A., Luo F. Anticipation of pain enhances the nociceptive transmission and functional connectivity within pain network in rats. Mol. Pain 2008, 4:34.
    • (2008) Mol. Pain , vol.4 , pp. 34
    • Wang, J.-Y.1    Zhang, H.-T.2    Chang, J.-Y.3    Woodward, D.J.4    Baccalá, L.A.5    Luo, F.6
  • 69
    • 57649220812 scopus 로고    scopus 로고
    • A unified Bayesian framework for MEG/EEG source imaging
    • Wipf D.P., Nagarajan S.S. A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 2009, 44:947-966.
    • (2009) NeuroImage , vol.44 , pp. 947-966
    • Wipf, D.P.1    Nagarajan, S.S.2
  • 71
    • 1842778981 scopus 로고    scopus 로고
    • Recursive penalized least squares solution for dynamical inverse problems of EEG generation
    • Yamashita O., Galka A., Ozaki T., Biscay R., Valdés-Sosa P.A. Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Hum. Brain Mapp. 2004, 21:221-235.
    • (2004) Hum. Brain Mapp. , vol.21 , pp. 221-235
    • Yamashita, O.1    Galka, A.2    Ozaki, T.3    Biscay, R.4    Valdés-Sosa, P.A.5
  • 72
    • 44449093442 scopus 로고    scopus 로고
    • Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data
    • Zumer J.M., Attias H.T., Sekihara K., Nagarajan S.S. Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data. NeuroImage 2008, 41:924-940.
    • (2008) NeuroImage , vol.41 , pp. 924-940
    • Zumer, J.M.1    Attias, H.T.2    Sekihara, K.3    Nagarajan, S.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.