메뉴 건너뛰기




Volumn 15, Issue 34, 2013, Pages 14147-14161

Miniaturized biological and electrochemical fuel cells: Challenges and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84881467276     PISSN: 14639076     EISSN: None     Source Type: Journal    
DOI: 10.1039/c3cp50804h     Document Type: Review
Times cited : (68)

References (113)
  • 1
    • 17644383333 scopus 로고    scopus 로고
    • Improved fuel utilization in microfluidic fuel cells: A computational study
    • A. Bazylak et al., Improved fuel utilization in microfluidic fuel cells: A computational study J. Power Sources 2005 143 57 66
    • (2005) J. Power Sources , vol.143 , pp. 57-66
    • Bazylak, A.1
  • 2
    • 41149163142 scopus 로고    scopus 로고
    • A Microfluidic Fuel Cell with Flow-Through Porous Electrodes
    • E. Kjeang et al., A Microfluidic Fuel Cell with Flow-Through Porous Electrodes J. Am. Chem. Soc. 2008 130 4000 4006
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 4000-4006
    • Kjeang, E.1
  • 3
    • 1342344549 scopus 로고    scopus 로고
    • Microfluidic fuel cell based on laminar flow
    • E. R. Choban et al., Microfluidic fuel cell based on laminar flow J. Power Sources 2004 128 54 60
    • (2004) J. Power Sources , vol.128 , pp. 54-60
    • Choban, E.R.1
  • 4
    • 28844451864 scopus 로고    scopus 로고
    • Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell
    • R. S. Jayashree et al., Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell J. Am. Chem. Soc. 2005 127 16758 16759
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 16758-16759
    • Jayashree, R.S.1
  • 5
    • 0037541270 scopus 로고    scopus 로고
    • Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications
    • A. Blum et al., Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications J. Power Sources 2003 117 22 25
    • (2003) J. Power Sources , vol.117 , pp. 22-25
    • Blum, A.1
  • 6
    • 2342450767 scopus 로고    scopus 로고
    • Fuel cells: A survey of current developments
    • M. A. J. Cropper et al., Fuel cells: a survey of current developments J. Power Sources 2004 131 57 61
    • (2004) J. Power Sources , vol.131 , pp. 57-61
    • Cropper, M.A.J.1
  • 7
    • 0037079073 scopus 로고    scopus 로고
    • Direct methanol fuel-cell combined with a small back-up battery
    • J. Han E.-S. Park Direct methanol fuel-cell combined with a small back-up battery J. Power Sources 2002 112 477 483
    • (2002) J. Power Sources , vol.112 , pp. 477-483
    • Han, J.1    Park, E.-S.2
  • 8
    • 10644228456 scopus 로고    scopus 로고
    • Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices
    • T. Zhang Q.-M. Wang Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices J. Power Sources 2005 140 72 80
    • (2005) J. Power Sources , vol.140 , pp. 72-80
    • Zhang, T.1    Wang, Q.-M.2
  • 9
    • 0032658065 scopus 로고    scopus 로고
    • A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure development
    • J. M. Ogden et al., A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development J. Power Sources 1999 79 143 168
    • (1999) J. Power Sources , vol.79 , pp. 143-168
    • Ogden, J.M.1
  • 10
    • 1842578981 scopus 로고    scopus 로고
    • A cost comparison of fuel-cell and battery electric vehicles
    • S. Eaves J. Eaves A cost comparison of fuel-cell and battery electric vehicles J. Power Sources 2004 130 208 212
    • (2004) J. Power Sources , vol.130 , pp. 208-212
    • Eaves, S.1    Eaves, J.2
  • 11
    • 79955009720 scopus 로고    scopus 로고
    • A microfluidic microbial fuel cell fabricated by soft lithography
    • F. Qian et al., A microfluidic microbial fuel cell fabricated by soft lithography Bioresour. Technol. 2011 102 5836 5840
    • (2011) Bioresour. Technol. , vol.102 , pp. 5836-5840
    • Qian, F.1
  • 12
    • 0038315494 scopus 로고    scopus 로고
    • Fuel cells for portable applications
    • C. K. Dyer Fuel cells for portable applications Fuel Cells Bull. 2002 2002 8 9
    • (2002) Fuel Cells Bull. , vol.2002 , pp. 8-9
    • Dyer, C.K.1
  • 13
    • 80053446269 scopus 로고    scopus 로고
    • Optofluidic characterization of marine algae using a microflow cytometer
    • N. Hashemi et al., Optofluidic characterization of marine algae using a microflow cytometer Biomicrofluidics 2011 5 032009
    • (2011) Biomicrofluidics , vol.5 , pp. 032009
    • Hashemi, N.1
  • 14
    • 79959221213 scopus 로고    scopus 로고
    • Microflow Cytometer for Optical Analysis of Phytoplankton
    • N. Hashemi et al., Microflow Cytometer for Optical Analysis of Phytoplankton Biosens. Bioelectron 2011 26 4263 4269
    • (2011) Biosens. Bioelectron , vol.26 , pp. 4263-4269
    • Hashemi, N.1
  • 15
    • 42549161189 scopus 로고    scopus 로고
    • Nanomechanical Control of Cell Rolling in Two Dimensions through Surface Patterning of Receptors
    • R. Karnik et al., Nanomechanical Control of Cell Rolling in Two Dimensions through Surface Patterning of Receptors Nano Lett. 2008 8 1153 1158
    • (2008) Nano Lett. , vol.8 , pp. 1153-1158
    • Karnik, R.1
  • 16
    • 2142701455 scopus 로고    scopus 로고
    • Interlocking mechanical and fluidic interconnections for microfluidic circuit boards
    • B. L. Gray et al., Interlocking mechanical and fluidic interconnections for microfluidic circuit boards Sens. Actuators, A 2004 112 18 24
    • (2004) Sens. Actuators, A , vol.112 , pp. 18-24
    • Gray, B.L.1
  • 17
    • 77954612963 scopus 로고    scopus 로고
    • Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid
    • N. Hashemi et al., Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid Lab Chip 2010 10 1952 1959
    • (2010) Lab Chip , vol.10 , pp. 1952-1959
    • Hashemi, N.1
  • 18
    • 83655164792 scopus 로고    scopus 로고
    • Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis
    • N. Lewpiriyawong et al., Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis Anal. Chem. 2011 83 9579 9585
    • (2011) Anal. Chem. , vol.83 , pp. 9579-9585
    • Lewpiriyawong, N.1
  • 19
    • 24644490760 scopus 로고    scopus 로고
    • Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media
    • E. R. Choban et al., Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media Electrochim. Acta 2005 50 5390 5398
    • (2005) Electrochim. Acta , vol.50 , pp. 5390-5398
    • Choban, E.R.1
  • 20
    • 10844273314 scopus 로고    scopus 로고
    • Fabrication and preliminary testing of a planar membraneless microchannel fuel cell
    • J. L. Cohen et al., Fabrication and preliminary testing of a planar membraneless microchannel fuel cell J. Power Sources 2005 139 96 105
    • (2005) J. Power Sources , vol.139 , pp. 96-105
    • Cohen, J.L.1
  • 21
    • 17444424966 scopus 로고    scopus 로고
    • 2 Planar Membraneless Microchannel Fuel Cell System with Open Circuit Potentials in Excess of 1.4 v
    • 2 Planar Membraneless Microchannel Fuel Cell System with Open Circuit Potentials in Excess of 1.4 V Langmuir 2005 21 3544 3550
    • (2005) Langmuir , vol.21 , pp. 3544-3550
    • Cohen, J.L.1
  • 22
    • 84862512045 scopus 로고    scopus 로고
    • Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators
    • R. Montazami et al., Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators Int. J. Smart Nano Mater. 2012 3 204 213
    • (2012) Int. J. Smart Nano Mater. , vol.3 , pp. 204-213
    • Montazami, R.1
  • 23
    • 79958851766 scopus 로고    scopus 로고
    • Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly
    • R. Montazami et al., Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly J. Appl. Phys. 2011 109 104301
    • (2011) J. Appl. Phys. , vol.109 , pp. 104301
    • Montazami, R.1
  • 24
    • 75149113752 scopus 로고    scopus 로고
    • Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators
    • S. Liu et al., Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators Sens. Actuators, A 2010 157 267 275
    • (2010) Sens. Actuators, A , vol.157 , pp. 267-275
    • Liu, S.1
  • 25
    • 0000767293 scopus 로고    scopus 로고
    • Soft lithographic methods for nano-fabrication
    • X.-M. Zhao et al., Soft lithographic methods for nano-fabrication J. Mater. Chem. 1997 7 1069 1074
    • (1997) J. Mater. Chem. , vol.7 , pp. 1069-1074
    • Zhao, X.-M.1
  • 26
    • 33947604006 scopus 로고    scopus 로고
    • High-performance microfluidic vanadium redox fuel cell
    • E. Kjeang et al., High-performance microfluidic vanadium redox fuel cell Electrochim. Acta 2007 52 4942 4946
    • (2007) Electrochim. Acta , vol.52 , pp. 4942-4946
    • Kjeang, E.1
  • 27
    • 7444235902 scopus 로고    scopus 로고
    • Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell
    • B. Min B. E. Logan Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell Environ. Sci. Technol. 2004 38 5809 5814
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 5809-5814
    • Min, B.1    Logan, B.E.2
  • 28
    • 34248174324 scopus 로고    scopus 로고
    • Production of electricity from the treatment of urban waste water using a microbial fuel cell
    • M. A. Rodrigo et al., Production of electricity from the treatment of urban waste water using a microbial fuel cell J. Power Sources 2007 169 198 204
    • (2007) J. Power Sources , vol.169 , pp. 198-204
    • Rodrigo, M.A.1
  • 29
    • 22344440626 scopus 로고    scopus 로고
    • Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell
    • Z. He et al., Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell Environ. Sci. Technol. 2005 39 5262 5267
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5262-5267
    • He, Z.1
  • 30
    • 77955926840 scopus 로고    scopus 로고
    • Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters
    • P. D. Kiely et al., Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters Bioresour. Technol. 2011 102 388 394
    • (2011) Bioresour. Technol. , vol.102 , pp. 388-394
    • Kiely, P.D.1
  • 31
    • 84873733225 scopus 로고    scopus 로고
    • A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens
    • H. Hou et al., A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens Lab Chip 2012 12 4151 4159
    • (2012) Lab Chip , vol.12 , pp. 4151-4159
    • Hou, H.1
  • 32
    • 0036022521 scopus 로고    scopus 로고
    • Harnessing microbially generated power on the seafloor
    • L. M. Tender et al., Harnessing microbially generated power on the seafloor Nat. Biotechnol. 2002 20 821 825
    • (2002) Nat. Biotechnol. , vol.20 , pp. 821-825
    • Tender, L.M.1
  • 33
    • 4143130857 scopus 로고    scopus 로고
    • Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch
    • J. Niessen et al., Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch Electrochem. Commun. 2004 6 955 958
    • (2004) Electrochem. Commun. , vol.6 , pp. 955-958
    • Niessen, J.1
  • 34
    • 33646030010 scopus 로고    scopus 로고
    • High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10
    • B. R. Ringeisen et al., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10 Environ. Sci. Technol. 2006 40 2629 2634
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 2629-2634
    • Ringeisen, B.R.1
  • 35
    • 33846631531 scopus 로고    scopus 로고
    • A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes
    • J. C. Biffinger et al., A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes Biosens. Bioelectron. 2007 22 1672 1679
    • (2007) Biosens. Bioelectron. , vol.22 , pp. 1672-1679
    • Biffinger, J.C.1
  • 36
    • 33847333324 scopus 로고    scopus 로고
    • A miniature microbial fuel cell operating with an aerobic anode chamber
    • B. R. Ringeisen et al., A miniature microbial fuel cell operating with an aerobic anode chamber J. Power Sources 2007 165 591 597
    • (2007) J. Power Sources , vol.165 , pp. 591-597
    • Ringeisen, B.R.1
  • 37
    • 84862869578 scopus 로고    scopus 로고
    • Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell
    • S. i. Ishii et al., Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell Appl. Microbiol. Biotechnol. 2012 94 1087 1094
    • (2012) Appl. Microbiol. Biotechnol. , vol.94 , pp. 1087-1094
    • Ishii, S.I.1
  • 38
    • 3242707506 scopus 로고    scopus 로고
    • Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane
    • H. Liu B. E. Logan Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane Environ. Sci. Technol. 2004 38 4040 4046
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 39
  • 40
    • 70350455268 scopus 로고    scopus 로고
    • A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation
    • F. Qian et al., A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation Lab Chip 2009 9 3076 3081
    • (2009) Lab Chip , vol.9 , pp. 3076-3081
    • Qian, F.1
  • 41
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • K. Rabaey et al., A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency Biotechnol. Lett. 2003 25 1531 1535
    • (2003) Biotechnol. Lett. , vol.25 , pp. 1531-1535
    • Rabaey, K.1
  • 42
    • 33748549027 scopus 로고    scopus 로고
    • An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy
    • Z. He et al., An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy Environ. Sci. Technol. 2006 40 5212 5217
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5212-5217
    • He, Z.1
  • 43
    • 68149167515 scopus 로고    scopus 로고
    • Energy from algae using microbial fuel cells
    • S. B. Velasquez-Orta et al., Energy from algae using microbial fuel cells Biotechnol. Bioeng. 2009 103 1068 1076
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 1068-1076
    • Velasquez-Orta, S.B.1
  • 44
    • 34447254945 scopus 로고    scopus 로고
    • Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture
    • Z. Ren et al., Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture Environ. Sci. Technol. 2007 41 4781 4786
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 4781-4786
    • Ren, Z.1
  • 45
    • 80052515158 scopus 로고    scopus 로고
    • Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator
    • I. Ivanov et al., Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator J. Power Sources 2011 196 9260 9269
    • (2011) J. Power Sources , vol.196 , pp. 9260-9269
    • Ivanov, I.1
  • 46
    • 82555193617 scopus 로고    scopus 로고
    • Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms
    • T. Miyake et al., Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms Energy Environ. Sci. 2011 4 5008 5012
    • (2011) Energy Environ. Sci. , vol.4 , pp. 5008-5012
    • Miyake, T.1
  • 47
    • 33846336459 scopus 로고    scopus 로고
    • Biofuel cells - Recent advances and applications
    • F. Davis S. P. Higson Biofuel cells - recent advances and applications Biosens. Bioelectron. 2007 22 1224 1235
    • (2007) Biosens. Bioelectron. , vol.22 , pp. 1224-1235
    • Davis, F.1    Higson, S.P.2
  • 48
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic Biofuel Cells for Implantable and Microscale Devices
    • S. C. Barton et al., Enzymatic Biofuel Cells for Implantable and Microscale Devices Chem. Rev. 2004 104 4867 4886
    • (2004) Chem. Rev. , vol.104 , pp. 4867-4886
    • Barton, S.C.1
  • 49
    • 83555160852 scopus 로고    scopus 로고
    • Enzyme precipitate coatings of glucose oxidase onto carbon paper for biofuel cell applications
    • M. Fischback et al., Enzyme precipitate coatings of glucose oxidase onto carbon paper for biofuel cell applications Biotechnol. Bioeng. 2012 109 318 324
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 318-324
    • Fischback, M.1
  • 50
    • 84858683374 scopus 로고    scopus 로고
    • Implanted Biofuel Cell Operating in a Living Snail
    • L. Halámková et al., Implanted Biofuel Cell Operating in a Living Snail J. Am. Chem. Soc. 2012 134 5040 5043
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 5040-5043
    • Halámková, L.1
  • 51
    • 84870042797 scopus 로고    scopus 로고
    • Living battery-biofuel cells operating in vivo in clams
    • A. Szczupak et al., Living battery-biofuel cells operating in vivo in clams Energy Environ. Sci. 2012 5 8891 8895
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8891-8895
    • Szczupak, A.1
  • 52
    • 0038513973 scopus 로고    scopus 로고
    • 2 Biofuel Cell and Its Operation in a Living Plant
    • 2 Biofuel Cell and Its Operation in a Living Plant J. Am. Chem. Soc. 2003 125 6588 6594
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 6588-6594
    • Mano, N.1
  • 53
    • 84856288432 scopus 로고    scopus 로고
    • An Implantable Biofuel Cell for a Live Insect
    • M. Rasmussen et al., An Implantable Biofuel Cell for a Live Insect J. Am. Chem. Soc. 2012 134 1458 1460
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1458-1460
    • Rasmussen, M.1
  • 54
    • 57949090117 scopus 로고    scopus 로고
    • Microfluidic fuel cells: A review
    • E. Kjeang et al., Microfluidic fuel cells: A review J. Power Sources 2009 186 353 369
    • (2009) J. Power Sources , vol.186 , pp. 353-369
    • Kjeang, E.1
  • 55
    • 33645284711 scopus 로고    scopus 로고
    • Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte
    • R. S. Jayashree et al., Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte Electrochem. Solid-State Lett. 2006 9 A252 A256
    • (2006) Electrochem. Solid-State Lett. , vol.9
    • Jayashree, R.S.1
  • 56
    • 34247603942 scopus 로고    scopus 로고
    • Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes
    • E. Kjeang et al., Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes J. Power Sources 2007 168 379 390
    • (2007) J. Power Sources , vol.168 , pp. 379-390
    • Kjeang, E.1
  • 57
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • G. M. Whitesides The origins and the future of microfluidics Nature 2006 442 368 373
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 58
    • 33748061293 scopus 로고    scopus 로고
    • Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel
    • M.-H. Chang et al., Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel J. Power Sources 2006 159 810 816
    • (2006) J. Power Sources , vol.159 , pp. 810-816
    • Chang, M.-H.1
  • 59
    • 24944498780 scopus 로고    scopus 로고
    • Microfluidics: Fluid physics at the nanoliter scale
    • T. M. Squires S. R. Quake Microfluidics: Fluid physics at the nanoliter scale Rev. Mod. Phys. 2005 77 977 1026
    • (2005) Rev. Mod. Phys. , vol.77 , pp. 977-1026
    • Squires, T.M.1    Quake, S.R.2
  • 60
    • 0344467129 scopus 로고    scopus 로고
    • A micro methanol fuel cell operating at near room temperature
    • T. J. Yen et al., A micro methanol fuel cell operating at near room temperature Appl. Phys. Lett. 2003 83 4056 4058
    • (2003) Appl. Phys. Lett. , vol.83 , pp. 4056-4058
    • Yen, T.J.1
  • 61
    • 37349003030 scopus 로고    scopus 로고
    • Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns
    • A. Grimes et al., Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns Lab Chip 2008 8 170 172
    • (2008) Lab Chip , vol.8 , pp. 170-172
    • Grimes, A.1
  • 62
    • 41149174255 scopus 로고    scopus 로고
    • Shrinky-Dink microfluidics: 3D polystyrene chips
    • C.-S. Chen et al., Shrinky-Dink microfluidics: 3D polystyrene chips Lab Chip 2008 8 622 624
    • (2008) Lab Chip , vol.8 , pp. 622-624
    • Chen, C.-S.1
  • 63
    • 77953099031 scopus 로고    scopus 로고
    • Better shrinkage than Shrinky-Dinks
    • D. Nguyen et al., Better shrinkage than Shrinky-Dinks Lab Chip 2010 10 1623 1626
    • (2010) Lab Chip , vol.10 , pp. 1623-1626
    • Nguyen, D.1
  • 64
    • 23044499167 scopus 로고    scopus 로고
    • Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide Cofactors for Biocatalysis
    • S. K. Yoon et al., Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide Cofactors for Biocatalysis J. Am. Chem. Soc. 2005 127 10466 10467
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 10466-10467
    • Yoon, S.K.1
  • 65
    • 41949136500 scopus 로고    scopus 로고
    • Sequential flow membraneless microfluidic fuel cell with porous electrodes
    • K. S. Salloum et al., Sequential flow membraneless microfluidic fuel cell with porous electrodes J. Power Sources 2008 180 243 252
    • (2008) J. Power Sources , vol.180 , pp. 243-252
    • Salloum, K.S.1
  • 66
    • 80052467577 scopus 로고    scopus 로고
    • A plate-frame flow-through microfluidic fuel cell stack
    • S. Moore et al., A plate-frame flow-through microfluidic fuel cell stack J. Power Sources 2011 196 9481 9487
    • (2011) J. Power Sources , vol.196 , pp. 9481-9487
    • Moore, S.1
  • 67
    • 84859883001 scopus 로고    scopus 로고
    • Air-breathing microfluidic fuel cell with fuel reservoir
    • S. A. M. Shaegh et al., Air-breathing microfluidic fuel cell with fuel reservoir J. Power Sources 2012 209 312 317
    • (2012) J. Power Sources , vol.209 , pp. 312-317
    • Shaegh, S.A.M.1
  • 68
  • 69
    • 0942290305 scopus 로고    scopus 로고
    • A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques
    • K. Shah et al., A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques Sens. Actuators, B 2004 97 157 167
    • (2004) Sens. Actuators, B , vol.97 , pp. 157-167
    • Shah, K.1
  • 70
    • 78650598567 scopus 로고    scopus 로고
    • Microbial biosensors: A review
    • L. Su et al., Microbial biosensors: A review Biosens. Bioelectron. 2011 26 1788 1799
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 1788-1799
    • Su, L.1
  • 71
    • 84864268679 scopus 로고    scopus 로고
    • From in Vitro to in Vivo - Biofuel Cells Are Maturing
    • U. Schröder From In Vitro to In Vivo - Biofuel Cells Are Maturing Angew. Chem., Int. Ed. 2012 51 7370 7372
    • (2012) Angew. Chem., Int. Ed. , vol.51 , pp. 7370-7372
    • Schröder, U.1
  • 72
    • 68049147268 scopus 로고    scopus 로고
    • A novel biofuel cell harvesting energy from activated human macrophages
    • M. Sakai et al., A novel biofuel cell harvesting energy from activated human macrophages Biosens. Bioelectron. 2009 25 68 75
    • (2009) Biosens. Bioelectron. , vol.25 , pp. 68-75
    • Sakai, M.1
  • 74
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • K. Rabaey W. Verstraete Microbial fuel cells: novel biotechnology for energy generation Trends Biotechnol. 2005 23 291 298
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 75
    • 84865172371 scopus 로고    scopus 로고
    • Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater
    • K. P. Katuri et al., Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater Bioelectrochemistry 2012 87 164 171
    • (2012) Bioelectrochemistry , vol.87 , pp. 164-171
    • Katuri, K.P.1
  • 76
    • 33645967739 scopus 로고    scopus 로고
    • Genome-wide expression analysis of yeast response during exposure to 4 °c
    • Y. Murata et al., Genome-wide expression analysis of yeast response during exposure to 4°C Extremophiles 2006 10 117 128
    • (2006) Extremophiles , vol.10 , pp. 117-128
    • Murata, Y.1
  • 77
    • 15344340854 scopus 로고    scopus 로고
    • Book Reviews
    • D. Llull Book Reviews Int. Microbiol. 2005 8 149 152
    • (2005) Int. Microbiol. , vol.8 , pp. 149-152
    • Llull, D.1
  • 78
    • 84881398478 scopus 로고    scopus 로고
    • A Microfluidic Reactor for Energy Applications
    • L. Wagner et al., A Microfluidic Reactor for Energy Applications Open J. Appl. Biosens. 2012 1 21 25
    • (2012) Open J. Appl. Biosens. , vol.1 , pp. 21-25
    • Wagner, L.1
  • 79
    • 22344440310 scopus 로고    scopus 로고
    • Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration
    • H. Liu et al., Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration Environ. Sci. Technol. 2005 39 5488 5493
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5488-5493
    • Liu, H.1
  • 80
    • 1842778990 scopus 로고    scopus 로고
    • Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell
    • H. Liu et al., Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell Environ. Sci. Technol. 2004 38 2281 2285
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 2281-2285
    • Liu, H.1
  • 81
    • 34248181574 scopus 로고    scopus 로고
    • Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells
    • B. Logan et al., Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells Environ. Sci. Technol. 2007 41 3341 3346
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3341-3346
    • Logan, B.1
  • 82
    • 41249086920 scopus 로고    scopus 로고
    • Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes
    • S. Srikanth et al., Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes Biotechnol. Bioeng. 2008 99 1065 1073
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 1065-1073
    • Srikanth, S.1
  • 83
    • 43249130718 scopus 로고    scopus 로고
    • Power sources and electrical recharging strategies for implantable medical devices
    • X. Wei J. Liu Power sources and electrical recharging strategies for implantable medical devices Front. Energy Power Eng. China 2008 2 1 13
    • (2008) Front. Energy Power Eng. China , vol.2 , pp. 1-13
    • Wei, X.1    Liu, J.2
  • 84
    • 79960454675 scopus 로고    scopus 로고
    • Microbial electricity generation via microfluidic flow control
    • Z. Li et al., Microbial electricity generation via microfluidic flow control Biotechnol. Bioeng. 2011 108 2061 2069
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 2061-2069
    • Li, Z.1
  • 85
    • 85027957914 scopus 로고    scopus 로고
    • Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC)
    • 10.1016/j.sna.2012.07.015
    • S. Choi J. Chae Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC) Sens. Actuators, A 2012 10.1016/j.sna.2012.07.015
    • (2012) Sens. Actuators, A
    • Choi, S.1    Chae, J.2
  • 86
    • 80052480880 scopus 로고    scopus 로고
    • Hybrid Biofuel Cell: Microbial Fuel Cell with an Enzymatic Air-Breathing Cathode
    • S. R. Higgins et al., Hybrid Biofuel Cell: Microbial Fuel Cell with an Enzymatic Air-Breathing Cathode ACS Catal. 2011 1 994 997
    • (2011) ACS Catal. , vol.1 , pp. 994-997
    • Higgins, S.R.1
  • 88
    • 80054691404 scopus 로고    scopus 로고
    • Impedance Characteristics and Polarization Behavior of a Microbial Fuel Cell in Response to Short-Term Changes in Medium pH
    • S. Jung et al., Impedance Characteristics and Polarization Behavior of a Microbial Fuel Cell in Response to Short-Term Changes in Medium pH Environ. Sci. Technol. 2011 45 9069 9074
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 9069-9074
    • Jung, S.1
  • 89
    • 84857918290 scopus 로고    scopus 로고
    • A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design
    • Y. Ahn B. Logan A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design Appl. Microbiol. Biotechnol. 2012 93 2241 2248
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , pp. 2241-2248
    • Ahn, Y.1    Logan, B.2
  • 90
    • 84866179897 scopus 로고    scopus 로고
    • Characterization of a microbial fuel cell with reticulated carbon foam electrodes
    • G. Lepage et al., Characterization of a microbial fuel cell with reticulated carbon foam electrodes Bioresour. Technol. 2012 124 199 207
    • (2012) Bioresour. Technol. , vol.124 , pp. 199-207
    • Lepage, G.1
  • 91
    • 84866395919 scopus 로고    scopus 로고
    • Electricity generation from carboxymethyl cellulose biomass: A new application of enzymatic biofuel cells
    • H. Cheng et al., Electricity generation from carboxymethyl cellulose biomass: A new application of enzymatic biofuel cells Electrochim. Acta 2012 82 203
    • (2012) Electrochim. Acta , vol.82 , pp. 203
    • Cheng, H.1
  • 92
    • 60849102781 scopus 로고    scopus 로고
    • Complete oxidation of glycerol in an enzymatic biofuel cell
    • R. Arechederra S. Minteer Complete oxidation of glycerol in an enzymatic biofuel cell Fuel Cells 2009 9 63 69
    • (2009) Fuel Cells , vol.9 , pp. 63-69
    • Arechederra, R.1    Minteer, S.2
  • 94
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • J. A. Cracknell et al., Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis Chem. Rev. 2008 108 2439 2461
    • (2008) Chem. Rev. , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1
  • 95
    • 0742304946 scopus 로고    scopus 로고
    • Miniature biofuel cells
    • A. Heller Miniature biofuel cells Phys. Chem. Chem. Phys. 2004 6 209 216
    • (2004) Phys. Chem. Chem. Phys. , vol.6 , pp. 209-216
    • Heller, A.1
  • 96
    • 82555175385 scopus 로고    scopus 로고
    • A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes
    • S. Boland D. Leech A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes Analyst 2012 137 113 117
    • (2012) Analyst , vol.137 , pp. 113-117
    • Boland, S.1    Leech, D.2
  • 97
    • 69949117642 scopus 로고    scopus 로고
    • A one-compartment fructose/air biological fuel cell based on direct electron transfer
    • X. Wu et al., A one-compartment fructose/air biological fuel cell based on direct electron transfer Biosens. Bioelectron. 2009 25 326 331
    • (2009) Biosens. Bioelectron. , vol.25 , pp. 326-331
    • Wu, X.1
  • 98
    • 77952038997 scopus 로고    scopus 로고
    • Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling
    • I. Ivanov et al., Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling Energies 2010 3 803 846
    • (2010) Energies , vol.3 , pp. 803-846
    • Ivanov, I.1
  • 99
    • 20344399650 scopus 로고    scopus 로고
    • Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator
    • F. Sato et al., Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator Electrochem. Commun. 2005 7 643 647
    • (2005) Electrochem. Commun. , vol.7 , pp. 643-647
    • Sato, F.1
  • 100
    • 44649168099 scopus 로고    scopus 로고
    • Energy harvesting by implantable abiotically catalyzed glucose fuel cells
    • S. Kerzenmacher et al., Energy harvesting by implantable abiotically catalyzed glucose fuel cells J. Power Sources 2008 182 1 17
    • (2008) J. Power Sources , vol.182 , pp. 1-17
    • Kerzenmacher, S.1
  • 101
    • 33746587444 scopus 로고    scopus 로고
    • Glucose oxidase anode for biofuel cell based on direct electron transfer
    • D. Ivnitski et al., Glucose oxidase anode for biofuel cell based on direct electron transfer Electrochem. Commun. 2006 8 1204 1210
    • (2006) Electrochem. Commun. , vol.8 , pp. 1204-1210
    • Ivnitski, D.1
  • 102
    • 77954177601 scopus 로고    scopus 로고
    • A study on direct glucose and fructose alkaline fuel cell
    • D. Basu S. Basu A study on direct glucose and fructose alkaline fuel cell Electrochim. Acta 2010 55 5775 5779
    • (2010) Electrochim. Acta , vol.55 , pp. 5775-5779
    • Basu, D.1    Basu, S.2
  • 103
    • 34147178293 scopus 로고    scopus 로고
    • Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis
    • Y. Kamitaka et al., Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis Phys. Chem. Chem. Phys. 2007 9 1793 1801
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 1793-1801
    • Kamitaka, Y.1
  • 104
    • 31944435660 scopus 로고    scopus 로고
    • Development of a membraneless ethanol/oxygen biofuel cell
    • S. Topcagic S. D. Minteer Development of a membraneless ethanol/oxygen biofuel cell Electrochim. Acta 2006 51 2168 2172
    • (2006) Electrochim. Acta , vol.51 , pp. 2168-2172
    • Topcagic, S.1    Minteer, S.D.2
  • 105
    • 60849094324 scopus 로고    scopus 로고
    • Enzymatic biofuel cell based on anode and cathode powered by ethanol
    • A. Ramanavicius et al., Enzymatic biofuel cell based on anode and cathode powered by ethanol Biosens. Bioelectron. 2008 24 761 766
    • (2008) Biosens. Bioelectron. , vol.24 , pp. 761-766
    • Ramanavicius, A.1
  • 106
    • 0037207993 scopus 로고    scopus 로고
    • Energy density of a methanol/hydrogen-peroxide fuel cell
    • D. N. Prater J. J. Rusek Energy density of a methanol/hydrogen-peroxide fuel cell Appl. Energy 2003 74 135 140
    • (2003) Appl. Energy , vol.74 , pp. 135-140
    • Prater, D.N.1    Rusek, J.J.2
  • 107
    • 0032002467 scopus 로고    scopus 로고
    • A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials
    • G. T. R. Palmore et al., A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials J. Electroanal. Chem. 1998 443 155 161
    • (1998) J. Electroanal. Chem. , vol.443 , pp. 155-161
    • Palmore, G.T.R.1
  • 109
    • 44249092750 scopus 로고    scopus 로고
    • 2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate
    • 2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate Electrochem. Commun. 2008 10 851 854
    • (2008) Electrochem. Commun. , vol.10 , pp. 851-854
    • Li, X.1
  • 110
    • 78650284921 scopus 로고    scopus 로고
    • Generating Electricity from Biofluid with a Nanowire-Based Biofuel Cell for Self-Powered Nanodevices
    • C. Pan et al., Generating Electricity from Biofluid with a Nanowire-Based Biofuel Cell for Self-Powered Nanodevices Adv. Mater. 2010 22 5388 5392
    • (2010) Adv. Mater. , vol.22 , pp. 5388-5392
    • Pan, C.1
  • 111
    • 76649123641 scopus 로고    scopus 로고
    • A Direct Electron Transfer-Based Glucose/Oxygen Biofuel Cell Operating in Human Serum
    • V. Coman et al., A Direct Electron Transfer-Based Glucose/Oxygen Biofuel Cell Operating in Human Serum Fuel Cells 2010 10 9 16
    • (2010) Fuel Cells , vol.10 , pp. 9-16
    • Coman, V.1
  • 112
    • 0033358042 scopus 로고    scopus 로고
    • 2 biofuel cell by bioengineered electrode surfaces
    • 2 biofuel cell by bioengineered electrode surfaces J. Electroanal. Chem. 1999 479 64 68
    • (1999) J. Electroanal. Chem. , vol.479 , pp. 64-68
    • Katz, E.1
  • 113
    • 77956420559 scopus 로고    scopus 로고
    • A Glucose BioFuel Cell Implanted in Rats
    • P. Cinquin et al., A Glucose BioFuel Cell Implanted in Rats PLoS One 2010 5 e10476
    • (2010) PLoS One , vol.5 , pp. 10476
    • Cinquin, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.