메뉴 건너뛰기




Volumn 27, Issue 8, 2005, Pages 597-603

A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation

Author keywords

DNA microarray data set; Gene expression; Gene regulation probability; Gene selection; Maximum likelihood estimation

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY;

EID: 20544473123     PISSN: 01415492     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10529-005-3253-0     Document Type: Article
Times cited : (9)

References (18)
  • 2
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • P Baldi AD Long 2001 A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes Bioinformatics 17 509 519
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 3
    • 0037460957 scopus 로고    scopus 로고
    • PCA disjoint models for multiclass cancer analysis using gene expression data
    • S Bicciato A Luchini CD Bello 2003 PCA disjoint models for multiclass cancer analysis using gene expression data Bioinformatics 19 571 578
    • (2003) Bioinformatics , vol.19 , pp. 571-578
    • Bicciato, S.1    Luchini, A.2    Bello, C.D.3
  • 4
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • VN Danh MR David 2002 Tumor classification by partial least squares using microarray gene expression data Bioinformatics 18 39 50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Danh, V.N.1    David, M.R.2
  • 6
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T Furey N Cristianini N Duffy D Bednarski M Schummer D Haussler 2000 Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics 16 906 914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I Guyon J Weston S Barnhill V Vapnik 2002 Gene selection for cancer classification using support vector machines Mach. Learn. 46 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • 4
    • T Hellem I Jonassen 2002 New feature subset selection procedures for classification of expression profiles Genome Biol. Res. 3 4 0017.1 0017.11
    • (2002) Genome Biol. Res. , vol.3 , pp. 00171-001711
    • Hellem, T.1    Jonassen, I.2
  • 12
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithm for classifying gene expression data
    • Y Li C Campbell M Tipping 2002 Bayesian automatic relevance determination algorithm for classifying gene expression data Bioinformatics 18 1332 1339
    • (2002) Bioinformatics , vol.18 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 13
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • KZ Mao 2004 Feature subset selection for support vector machines through discriminative function pruning analysis IEEE Trans. Sys. Man. Cyber. B34 60 67
    • (2004) IEEE Trans. Sys. Man. Cyber. , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 14
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • MA Newton CM Kendziorski CS Richmond FR Blattner KW Tsui 2001 On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data J. Comput. Biol. 8 37 52
    • (2001) J. Comput. Biol. , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 16
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • GT Virginia T Robert C Gilbert 2001 Significance analysis of microarrays applied to the ionizing radiation response Proc. Natl. Acad. Sic. USA 98 5116 5121
    • (2001) Proc. Natl. Acad. Sic. USA , vol.98 , pp. 5116-5121
    • Virginia, G.T.1    Robert, T.2    Gilbert, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.