메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 149-167

Variable selection for the multicategory SVM via adaptive sup-norm regularization

Author keywords

Classification; L1 norm penalty; Multicategory; Sup norm; SVM

Indexed keywords


EID: 47749133494     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/08-EJS122     Document Type: Article
Times cited : (60)

References (36)
  • 2
    • 85035264166 scopus 로고    scopus 로고
    • Convex multi-task feature learning., To appear
    • Argyriou, A., Evgeniou, T. and M., P. (2007). Convex multi-task feature learning. Machine Learning. To appear.
    • (2007) Machine Learning
    • Argyriou, A.1    Evgeniou, T.A.2
  • 4
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufmann, San Francisco, CA
    • Bradley, P. S. and Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proc. 15th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA, 82-90.
    • (1998) Proc. 15Th International Conf. On Machine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 6
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2 265-292.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of American Statistical Association, 97 77-87.
    • (2002) Journal of American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 11
    • 33746176183 scopus 로고    scopus 로고
    • Challenges in statistical machine learning
    • Lafferty, J. and Wasserman, L. (2006). Challenges in statistical machine learning. Statistica Sinica, 16 307-323.
    • (2006) Statistica Sinica , vol.16 , pp. 307-323
    • Lafferty, J.1    Wasserman, L.2
  • 12
    • 33747496466 scopus 로고    scopus 로고
    • Structured multicategory support vector machine with anova decomposition
    • Lee, Y., Kim, Y., Lee, S. and Koo, J.-Y. (2006). Structured multicategory support vector machine with anova decomposition. Biometrika, 93 555-571.
    • (2006) Biometrika , vol.93 , pp. 555-571
    • Lee, Y.1    Kim, Y.2    Lee, S.3    Koo, J.-Y.4
  • 13
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Journal of American Statistical Association, 99 67-81.
    • (2004) Journal of American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 15
    • 38049162221 scopus 로고    scopus 로고
    • Variable selection via a combination of the and l1 penalties
    • Liu, Y. and Wu, Y. (2007). Variable selection via a combination of the and l1 penalties. Journal of Computation and Graphical Statistics, 16 782-798.
    • (2007) Journal of Computation and Graphical Statistics , vol.16 , pp. 782-798
    • Liu, Y.1    Wu, Y.2
  • 17
    • 33847662483 scopus 로고    scopus 로고
    • Feature space perspectives for learning the kernel
    • Micchelli, C. and Pontil, M. (2007). Feature space perspectives for learning the kernel. Machine Learning, 66 297-319.
    • (2007) Machine Learning , vol.66 , pp. 297-319
    • Micchelli, C.1    Pontil, M.2
  • 21
    • 34547164089 scopus 로고    scopus 로고
    • Robust regression shrinkage and consistent variable selection via the lad-lasso
    • Wang, H., Li, G. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection via the lad-lasso. Journal of Business and Economics Statistics, 25 347-355.
    • (2007) Journal of Business and Economics Statistics , vol.25 , pp. 347-355
    • Wang, H.1    Li, G.2    Jiang, G.3
  • 23
    • 34250708395 scopus 로고    scopus 로고
    • On-norm multi-class support vector machines: Methodology and theory
    • Wang, L. and Shen, X. (2007b). On-norm multi-class support vector machines: methodology and theory. Journal of the American Statistical Association, 102 583-594.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 583-594
    • Wang, L.1    Shen, X.2
  • 24
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • Wang, L., Zhu, J. and Zou, H. (2006). The doubly regularized support vector machine. Statistica Sinica, 16 589-615.
    • (2006) Statistica Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 29
    • 85035300265 scopus 로고    scopus 로고
    • Variable selection in quantile regression
    • To appear
    • Wu, Y. and Liu, Y. (2007b). Variable selection in quantile regression. Statistica Sinica. To appear.
    • (2007) Statistica Sinica
    • Wu, Y.1    Liu, Y.2
  • 30
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 31
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with nonconvex penalty
    • Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines with nonconvex penalty. Bioinformatics, 22 88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 32
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive-lasso for cox’s proportional hazard model
    • Zhang, H. H. and Lu, W. (2007). Adaptive-lasso for cox’s proportional hazard model. Biometrika, 94 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.