-
2
-
-
85035264166
-
-
Convex multi-task feature learning., To appear
-
Argyriou, A., Evgeniou, T. and M., P. (2007). Convex multi-task feature learning. Machine Learning. To appear.
-
(2007)
Machine Learning
-
-
Argyriou, A.1
Evgeniou, T.A.2
-
3
-
-
0026966646
-
(1992). A training algorithm for optimal margin classifiers
-
ACM Press, Pittsburgh, PA
-
Boser, B. E., Guyon, I. M. and Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Fifth Annual ACM Workshop on Computational Learning Theory. ACM Press, Pittsburgh, PA, 144-152.
-
Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.3
-
4
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
Morgan Kaufmann, San Francisco, CA
-
Bradley, P. S. and Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proc. 15th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA, 82-90.
-
(1998)
Proc. 15Th International Conf. On Machine Learning
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
6
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2 265-292.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
8
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of American Statistical Association, 97 77-87.
-
(2002)
Journal of American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
10
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7 673-679.
-
(2001)
Nature Medicine
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringnér, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
11
-
-
33746176183
-
Challenges in statistical machine learning
-
Lafferty, J. and Wasserman, L. (2006). Challenges in statistical machine learning. Statistica Sinica, 16 307-323.
-
(2006)
Statistica Sinica
, vol.16
, pp. 307-323
-
-
Lafferty, J.1
Wasserman, L.2
-
12
-
-
33747496466
-
Structured multicategory support vector machine with anova decomposition
-
Lee, Y., Kim, Y., Lee, S. and Koo, J.-Y. (2006). Structured multicategory support vector machine with anova decomposition. Biometrika, 93 555-571.
-
(2006)
Biometrika
, vol.93
, pp. 555-571
-
-
Lee, Y.1
Kim, Y.2
Lee, S.3
Koo, J.-Y.4
-
13
-
-
2142775432
-
Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
-
Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Journal of American Statistical Association, 99 67-81.
-
(2004)
Journal of American Statistical Association
, vol.99
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
15
-
-
38049162221
-
Variable selection via a combination of the and l1 penalties
-
Liu, Y. and Wu, Y. (2007). Variable selection via a combination of the and l1 penalties. Journal of Computation and Graphical Statistics, 16 782-798.
-
(2007)
Journal of Computation and Graphical Statistics
, vol.16
, pp. 782-798
-
-
Liu, Y.1
Wu, Y.2
-
16
-
-
34547234238
-
Support vector machines with adaptive lq penalties
-
Liu, Y., Zhang, H. H., Park, C. and Ahn, J. (2007). Support vector machines with adaptive lq penalties. Computational Statistics and Data Analysis, 51 6380-6394.
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 6380-6394
-
-
Liu, Y.1
Zhang, H.H.2
Park, C.3
Ahn, J.4
-
17
-
-
33847662483
-
Feature space perspectives for learning the kernel
-
Micchelli, C. and Pontil, M. (2007). Feature space perspectives for learning the kernel. Machine Learning, 66 297-319.
-
(2007)
Machine Learning
, vol.66
, pp. 297-319
-
-
Micchelli, C.1
Pontil, M.2
-
21
-
-
34547164089
-
Robust regression shrinkage and consistent variable selection via the lad-lasso
-
Wang, H., Li, G. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection via the lad-lasso. Journal of Business and Economics Statistics, 25 347-355.
-
(2007)
Journal of Business and Economics Statistics
, vol.25
, pp. 347-355
-
-
Wang, H.1
Li, G.2
Jiang, G.3
-
23
-
-
34250708395
-
On-norm multi-class support vector machines: Methodology and theory
-
Wang, L. and Shen, X. (2007b). On-norm multi-class support vector machines: methodology and theory. Journal of the American Statistical Association, 102 583-594.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 583-594
-
-
Wang, L.1
Shen, X.2
-
24
-
-
33746154240
-
The doubly regularized support vector machine
-
Wang, L., Zhu, J. and Zou, H. (2006). The doubly regularized support vector machine. Statistica Sinica, 16 589-615.
-
(2006)
Statistica Sinica
, vol.16
, pp. 589-615
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
25
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston, J., Elisseeff, A., Schölkopf, B. and Tipping, M. (2003). Use of the zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3 1439-1461.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
29
-
-
85035300265
-
Variable selection in quantile regression
-
To appear
-
Wu, Y. and Liu, Y. (2007b). Variable selection in quantile regression. Statistica Sinica. To appear.
-
(2007)
Statistica Sinica
-
-
Wu, Y.1
Liu, Y.2
-
30
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68 49-67.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
31
-
-
30344438839
-
Gene selection using support vector machines with nonconvex penalty
-
Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines with nonconvex penalty. Bioinformatics, 22 88-95.
-
(2006)
Bioinformatics
, vol.22
, pp. 88-95
-
-
Zhang, H.H.1
Ahn, J.2
Lin, X.3
Park, C.4
-
32
-
-
34548151636
-
Adaptive-lasso for cox’s proportional hazard model
-
Zhang, H. H. and Lu, W. (2007). Adaptive-lasso for cox’s proportional hazard model. Biometrika, 94 691-703.
-
(2007)
Biometrika
, vol.94
, pp. 691-703
-
-
Zhang, H.H.1
Lu, W.2
-
34
-
-
24644515558
-
1-norm support vector machines
-
Zhu, J., Hastie, T., Rosset, S. and Tibshirani, R. (2003). 1-norm support vector machines. Neural Information Processing Systems, 16.
-
(2003)
Neural Information Processing Systems
-
-
Zhu, J.1
Hastie, T.2
Rosset, S.3
Tibshirani, R.4
|