메뉴 건너뛰기




Volumn 31, Issue 11, 2010, Pages 1302-1309

Parallel implementation of Artificial Neural Network training for speech recognition

Author keywords

Artificial Neural Network; Block Back propagation; CUDA; Fast Training; Focused Attention Back Propagation; GPU

Indexed keywords

ACOUSTIC MODEL; ARTIFICIAL NEURAL NETWORK; BACKPROPAGATION LEARNING ALGORITHM; BLOCK SIZES; FEATURE VECTORS; FEED-FORWARD; LANGUAGE INTERFACE; LARGE SIZES; LARGE VOCABULARY SPEECH RECOGNITION; MULTI-CORE PROCESSOR; MULTI-THREAD; OPTIMIZED IMPLEMENTATION; PARALLEL IMPLEMENTATIONS; REAL-WORLD; SEQUENTIAL PATTERNS; SIMD ARCHITECTURE; SPEECH RECOGNITION SYSTEMS; SPEED-UPS; TRAINING PROCEDURES; TRAINING TIME;

EID: 77953127720     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.02.003     Document Type: Article
Times cited : (38)

References (24)
  • 2
    • 0028378798 scopus 로고
    • An efficient implementation of BP on RISC-based workstations
    • Anguita D., Parodi G., and Zunino R. An efficient implementation of BP on RISC-based workstations. Neurocomputing 6 (1994) 57-65
    • (1994) Neurocomputing , vol.6 , pp. 57-65
    • Anguita, D.1    Parodi, G.2    Zunino, R.3
  • 3
    • 0030676599 scopus 로고    scopus 로고
    • Bilmes, J., Asanovic, K., Chin, C., Demmel, J., 1997. Using PHiPAC to speed error back-propagation learning. In: Proc. Internat. Conf. on Acoustics, Speech and Signal Processing, ICASSP-97, pp. 4153-4156.
    • Bilmes, J., Asanovic, K., Chin, C., Demmel, J., 1997. Using PHiPAC to speed error back-propagation learning. In: Proc. Internat. Conf. on Acoustics, Speech and Signal Processing, ICASSP-97, pp. 4153-4156.
  • 4
    • 19044386208 scopus 로고    scopus 로고
    • An updated set of basic linear algebra subprograms (BLAS)
    • Blackford L.S., et al. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Software 28 2 (2002) 135-151
    • (2002) ACM Trans. Math. Software , vol.28 , Issue.2 , pp. 135-151
    • Blackford, L.S.1
  • 6
    • 70450197388 scopus 로고    scopus 로고
    • Using parallel architectures in speech recognition
    • Cardinal, P., Dumouchel, P., Boulianne, G., 2009. Using parallel architectures in speech recognition. In: Proc. INTERSPEECH 2009, pp. 3039-3042.
    • (2009) Proc. INTERSPEECH , pp. 3039-3042
    • Cardinal, P.1    Dumouchel, P.2    Boulianne, G.3
  • 7
    • 70350605683 scopus 로고    scopus 로고
    • Cernansky, M., 2009. Training recurrent neural network using multistream extended Kalman filter on multicore processor and cuda enabled graphic processor unit. In: Alippi, C., et al. (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks - LNCS 5768, Part 1, ICANN 2008, Limassol, Cyprus, pp. 381-390.
    • Cernansky, M., 2009. Training recurrent neural network using multistream extended Kalman filter on multicore processor and cuda enabled graphic processor unit. In: Alippi, C., et al. (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks - LNCS 5768, Part 1, ICANN 2008, Limassol, Cyprus, pp. 381-390.
  • 8
    • 85009112348 scopus 로고    scopus 로고
    • Four-layer categorization scheme of fast GMM computation techniques in large vocabulary continuous speech recognition systems
    • Chan, A., Sherwani, J., Mosur, R., Rudnicky, A., 2004. Four-layer categorization scheme of fast GMM computation techniques in large vocabulary continuous speech recognition systems. In: Proc. INTERSPEECH 2004, pp. 689-692.
    • (2004) Proc. INTERSPEECH , pp. 689-692
    • Chan, A.1    Sherwani, J.2    Mosur, R.3    Rudnicky, A.4
  • 9
    • 67349241918 scopus 로고    scopus 로고
    • Harnessing graphics processors for the fast computation of acoustic likelihoods in speech recognition
    • Dixon P.R., Oonishi T., and Furui S. Harnessing graphics processors for the fast computation of acoustic likelihoods in speech recognition. Comput. Speech Lang. 23 (2009) 510-526
    • (2009) Comput. Speech Lang. , vol.23 , pp. 510-526
    • Dixon, P.R.1    Oonishi, T.2    Furui, S.3
  • 10
    • 3943086579 scopus 로고
    • Acoustic-phonetic modeling for flexible vocabulary speech recognition
    • Fissore, L., Laface, P., Ravera, F., 1995. Acoustic-phonetic modeling for flexible vocabulary speech recognition. In: Proc. EUROSPEECH 95, pp. 799-802.
    • (1995) Proc. EUROSPEECH , vol.95 , pp. 799-802
    • Fissore, L.1    Laface, P.2    Ravera, F.3
  • 17
    • 77953134027 scopus 로고    scopus 로고
    • Loquendo ASR. .
  • 19
    • 2142662996 scopus 로고    scopus 로고
    • GPU implementation of neural networks
    • Oh K.S., and Jung K. GPU implementation of neural networks. Pattern Recognition 37 (2004) 1311-1314
    • (2004) Pattern Recognition , vol.37 , pp. 1311-1314
    • Oh, K.S.1    Jung, K.2
  • 22
    • 0000646059 scopus 로고
    • Learning Internal Representations by Error Propagations
    • Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press pp. 318-362
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning Internal Representations by Error Propagations. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations vol. 1 (1986), MIT Press pp. 318-362
    • (1986) Foundations , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 84976832431 scopus 로고
    • Methods to speedup error back propagation learning algorithm
    • Sarkar D. Methods to speedup error back propagation learning algorithm. ACM Comput. Surveys 27 4 (1995) 519-542
    • (1995) ACM Comput. Surveys , vol.27 , Issue.4 , pp. 519-542
    • Sarkar, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.