메뉴 건너뛰기




Volumn 82, Issue , 2012, Pages 186-195

Prediction for noisy nonlinear time series by echo state network based on dual estimation

Author keywords

Dual estimation; Echo state network; Kalman filter; Prediction; Time series

Indexed keywords

BLAST FURNACE GAS; DUAL ESTIMATION; ECHO STATE NETWORKS; INTERNAL STATE; MACKEY-GLASS TIME SERIES; NOISE ADDITION; NONLINEAR KALMAN FILTER; NONLINEAR TIME SERIES; PARAMETERS DETERMINATION; PREDICTION MODEL; REGRESSION MODEL;

EID: 84862788716     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.11.021     Document Type: Article
Times cited : (83)

References (34)
  • 1
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feed-forward networks are universal approximators. Neural Networks 1989, 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 2
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication
    • Jaeger H., Haass H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science 2004, 304:78-80.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haass, H.2
  • 4
    • 77952549379 scopus 로고    scopus 로고
    • A comparative study of reservoir computing strategies for monthly time series prediction
    • Wyffels F., Schrauwen B. A comparative study of reservoir computing strategies for monthly time series prediction. Neurocomputing 2010, 73:1958-1964.
    • (2010) Neurocomputing , vol.73 , pp. 1958-1964
    • Wyffels, F.1    Schrauwen, B.2
  • 6
    • 78651275150 scopus 로고    scopus 로고
    • An augmented echo state network for nonlinear adaptive filtering of complex noncircular signals
    • Xia Y., Jelfs B., Van Hulle M.M. An augmented echo state network for nonlinear adaptive filtering of complex noncircular signals. IEEE Trans. Neural Networks 2010, 22:1-10.
    • (2010) IEEE Trans. Neural Networks , vol.22 , pp. 1-10
    • Xia, Y.1    Jelfs, B.2    Van Hulle, M.M.3
  • 8
    • 84943251123 scopus 로고    scopus 로고
    • Echo state networks for mobile robot modeling and control, in: Robot Soccer World Cup 3020
    • P.G. Ploger, A. Arghir, T. Gunther, Echo state networks for mobile robot modeling and control, in: Robot Soccer World Cup 3020, 2003, pp. 157-168.
    • (2003) , pp. 157-168
    • Ploger, P.G.1    Arghir, A.2    Gunther, T.3
  • 10
    • 67650524202 scopus 로고    scopus 로고
    • Improved echo state network based on data-driven and its application in prediction of blast furnace gas output
    • Liu Y., Zhao J., Wang W. Improved echo state network based on data-driven and its application in prediction of blast furnace gas output. Acta Automatica Sin. 2009, 35:731-738.
    • (2009) Acta Automatica Sin. , vol.35 , pp. 731-738
    • Liu, Y.1    Zhao, J.2    Wang, W.3
  • 11
    • 34249819041 scopus 로고    scopus 로고
    • Decoupled echo state networks with lateral inhibition
    • Xue Y., Yang L., Haykin S. Decoupled echo state networks with lateral inhibition. Neural Networks 2007, 20:365-376.
    • (2007) Neural Networks , vol.20 , pp. 365-376
    • Xue, Y.1    Yang, L.2    Haykin, S.3
  • 12
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
    • Steil J.J. Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks 2007, 20:353-364.
    • (2007) Neural Networks , vol.20 , pp. 353-364
    • Steil, J.J.1
  • 14
    • 77954440956 scopus 로고    scopus 로고
    • Multi-reservoir echo state network with sparse Bayesian learning
    • Han M., Mu D. Multi-reservoir echo state network with sparse Bayesian learning. Adv. Neural Networks 2010, 450-456.
    • (2010) Adv. Neural Networks , pp. 450-456
    • Han, M.1    Mu, D.2
  • 17
    • 0015108868 scopus 로고
    • A comparison of several non-linear filters for re-entry vehicle tracking
    • Mehra R. A comparison of several non-linear filters for re-entry vehicle tracking. IEEE Trans. Autom. Control 1971, 16:307-319.
    • (1971) IEEE Trans. Autom. Control , vol.16 , pp. 307-319
    • Mehra, R.1
  • 18
    • 84864123850 scopus 로고
    • Suboptimal state estimation for continuous-time nonlinear systems from discrete noise measurements
    • Athans M., Wsihner R.P., Bertolini A. Suboptimal state estimation for continuous-time nonlinear systems from discrete noise measurements. IEEE Trans. Autom. Control 1968, 13:504-514.
    • (1968) IEEE Trans. Autom. Control , vol.13 , pp. 504-514
    • Athans, M.1    Wsihner, R.P.2    Bertolini, A.3
  • 19
    • 0031271584 scopus 로고    scopus 로고
    • A finite difference method for linearizing in nonlinear estimation algorithms
    • Schei T.S. A finite difference method for linearizing in nonlinear estimation algorithms. Automatica 1997, 33:2051-2058.
    • (1997) Automatica , vol.33 , pp. 2051-2058
    • Schei, T.S.1
  • 20
    • 0033723743 scopus 로고    scopus 로고
    • A new method for the nonlinear transformation of means and covariances in filters and estimators
    • Julier S., Uhlmann J. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 2000, 45:477-482.
    • (2000) IEEE Trans. Autom. Control , vol.45 , pp. 477-482
    • Julier, S.1    Uhlmann, J.2
  • 21
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation, in: IEEE Invited Paper, Proceedings of the IEEE
    • S. Julier, J. Uhlmann, Unscented filtering and nonlinear estimation, in: IEEE Invited Paper, Proceedings of the IEEE, vol. 92, 2004, pp. 401-422.
    • (2004) , vol.92 , pp. 401-422
    • Julier, S.1    Uhlmann, J.2
  • 23
    • 57049186443 scopus 로고    scopus 로고
    • Nonlinear Bayesian filters for training recurrent neural networks
    • Springer, A. Gelbukh, E. Morales (Eds.)
    • Arasaratnam I., Haykin S. Nonlinear Bayesian filters for training recurrent neural networks. Advances in Artificial Intelligence 2008, 12-33. Springer. A. Gelbukh, E. Morales (Eds.).
    • (2008) Advances in Artificial Intelligence , pp. 12-33
    • Arasaratnam, I.1    Haykin, S.2
  • 24
    • 68649105450 scopus 로고    scopus 로고
    • An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series
    • Wang Z., Liu X., Liu Y., Liang J., Vinciotti V. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2009, 6:410-419.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.6 , pp. 410-419
    • Wang, Z.1    Liu, X.2    Liu, Y.3    Liang, J.4    Vinciotti, V.5
  • 25
    • 33846007280 scopus 로고    scopus 로고
    • A neural network learning algorithm of chemical process modeling based on the extended Kalman filter
    • Yang H., Li J., Ding F. A neural network learning algorithm of chemical process modeling based on the extended Kalman filter. Neurocomputing 2007, 70:625-632.
    • (2007) Neurocomputing , vol.70 , pp. 625-632
    • Yang, H.1    Li, J.2    Ding, F.3
  • 26
    • 0036826054 scopus 로고    scopus 로고
    • Training radial basis neural networks with the extended Kalman filter
    • Simon D. Training radial basis neural networks with the extended Kalman filter. Neurocomputing 2002, 48:455-475.
    • (2002) Neurocomputing , vol.48 , pp. 455-475
    • Simon, D.1
  • 29
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197:287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 30
    • 69449092740 scopus 로고    scopus 로고
    • Effects of spectral radius and settling time in the performance of echo state networks
    • Venayagamoorthy G., Shishir B. Effects of spectral radius and settling time in the performance of echo state networks. Neural Networks 2009, 22:861-863.
    • (2009) Neural Networks , vol.22 , pp. 861-863
    • Venayagamoorthy, G.1    Shishir, B.2
  • 31
    • 79959546667 scopus 로고    scopus 로고
    • Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering
    • Zeng N., Wang Z., Li Y., Du M., Liu X. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering. IEEE Trans. Biomed. Eng. 2011, 58:1959-1966.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , pp. 1959-1966
    • Zeng, N.1    Wang, Z.2    Li, Y.3    Du, M.4    Liu, X.5
  • 32
    • 79954529650 scopus 로고    scopus 로고
    • Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks
    • Shen B., Wang Z., Hung Y.S., Chesi G. Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks. IEEE Trans. Ind. Electron. 2011, 58:1971-1979.
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , pp. 1971-1979
    • Shen, B.1    Wang, Z.2    Hung, Y.S.3    Chesi, G.4
  • 33
    • 79952188587 scopus 로고    scopus 로고
    • Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements
    • Liang J., Wang Z., Liu X. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Networks 2011, 22:486-496.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 486-496
    • Liang, J.1    Wang, Z.2    Liu, X.3
  • 34
    • 78651327603 scopus 로고    scopus 로고
    • Bounded H-infinity synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon
    • Shen B., Wang Z., Liu X. Bounded H-infinity synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon. IEEE Trans. Neural Networks 2011, 22:145-157.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 145-157
    • Shen, B.1    Wang, Z.2    Liu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.