메뉴 건너뛰기




Volumn 3, Issue 2, 2013, Pages 301-305

Wavelet based features for classification of normal, ictal and interictal EEG signals

Author keywords

Electroencephalogram; Inter Quartile Range; Seizure Detection; Wavelet Transform

Indexed keywords

ARTICLE; ELECTRODE; ELECTROENCEPHALOGRAM; EPILEPSY; EPILEPTOGENESIS; HEMISPHERE; HUMAN; SEIZURE; SENSITIVITY AND SPECIFICITY; SLEEP WAKING CYCLE; WAVELET ANALYSIS;

EID: 84881238719     PISSN: 21567018     EISSN: 21567026     Source Type: Journal    
DOI: 10.1166/jmihi.2013.1161     Document Type: Article
Times cited : (12)

References (41)
  • 3
  • 4
    • 39749182703 scopus 로고    scopus 로고
    • Cardiac state diagnosis using higher order spectra of heart rate variability
    • K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, Cardiac state diagnosis using higher order spectra of heart rate variability. J. Med. Eng. Technol. 32, 145 (2006).
    • (2006) J. Med. Eng. Technol. , vol.32 , pp. 145
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 6
    • 16344387731 scopus 로고    scopus 로고
    • Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE)
    • R. S. Fisher, W. V. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46, 470 (2005).
    • (2005) Epilepsia , vol.46 , pp. 470
    • Fisher, R.S.1    Boas, W.V.E.2    Blume, W.3    Elger, C.4    Genton, P.5    Lee, P.6    Engel, J.7
  • 7
    • 77953788429 scopus 로고    scopus 로고
    • Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform
    • A. S. Zandi, M. Javidan, G. A. Dumont, and R. Tafreshi, Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Biomed. Eng. 57, 1639 (2010).
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , pp. 1639
    • Zandi, A.S.1    Javidan, M.2    Dumont, G.A.3    Tafreshi, R.4
  • 8
    • 0015693158 scopus 로고
    • An EEG device for monitoring seizure discharges
    • P. F. Prior, R. S. M. Virden, and D. E. Maynard, An EEG device for monitoring seizure discharges. Epilepsia 14, 367 (1973).
    • (1973) Epilepsia , vol.14 , pp. 367
    • Prior, P.F.1    Virden, R.S.M.2    Maynard, D.E.3
  • 9
    • 0011853774 scopus 로고
    • The online computer detection and recording of spontaneous temporal lobe epileptic seizures from patients with implanted depth electrodes via a radio-telemetry link
    • J. R. Ives, C. J. Thompson, P. Gloor, A. Olivier, and J. F. Woods, The online computer detection and recording of spontaneous temporal lobe epileptic seizures from patients with implanted depth electrodes via a radio-telemetry link. Electroencephalogr. Clin. Neurophysiol. 37, 205 (1974).
    • (1974) Electroencephalogr. Clin. Neurophysiol. , vol.37 , pp. 205
    • Ives, J.R.1    Thompson, C.J.2    Gloor, P.3    Olivier, A.4    Woods, J.F.5
  • 10
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG, electroencephalogr
    • J. Gotman, Automatic recognition of epileptic seizures in the EEG, electroencephalogr. Clin. Neurophysiol. 54, 530 (1982).
    • (1982) Clin. Neurophysiol. , vol.54 , pp. 530
    • Gotman, J.1
  • 11
    • 0027199942 scopus 로고
    • An automated seizure monitoring system for patients with indwelling recording electrodes
    • G. W. Harding, An automated seizure monitoring system for patients with indwelling recording electrodes. Electroencephalogr. Clin. Neurophysiol. 86, 428 (1993).
    • (1993) Electroencephalogr. Clin. Neurophysiol. , vol.86 , pp. 428
    • Harding, G.W.1
  • 12
    • 0031029383 scopus 로고    scopus 로고
    • A patient specific algorithm for the detection of seizure onset in long-term EEG monitoring; Possible use as a warning device
    • H. Qu and J. Gotman, A patient specific algorithm for the detection of seizure onset in long-term EEG monitoring; possible use as a warning device. IEEE Trans. Biomed. Eng. 44, 115 (1997).
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , pp. 115
    • Qu, H.1    Gotman, J.2
  • 13
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
    • K. Polat and S. Gunes, Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst. Appl. 34, 2039 (2008).
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2039
    • Polat, K.1    Gunes, S.2
  • 14
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • E. D. Ubeyli, Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38, 14 (2008).
    • (2008) Comput. Biol. Med. , vol.38 , pp. 14
    • Ubeyli, E.D.1
  • 16
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • N. Nicolaou and J. Georgiou, Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39, 202 (2012).
    • (2012) Expert Syst. Appl. , vol.39 , pp. 202
    • Nicolaou, N.1    Georgiou, J.2
  • 17
    • 82255179229 scopus 로고    scopus 로고
    • A tunable support vector machine assembly classifier for epileptic seizure detection
    • Y. Tang and D. M. Durand, A tunable support vector machine assembly classifier for epileptic seizure detection. Expert Syst. Appl. 39, 3925 (2012).
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3925
    • Tang, Y.1    Durand, D.M.2
  • 21
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • C. K. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, Application of higher order spectra to identify epileptic EEG. J. Med. Sys. 35, 1563 (2011).
    • (2011) J. Med. Sys. , vol.35 , pp. 1563
    • Chua, C.K.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 22
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • U. R. Acharya, C. K. Chua, T. C. Lim, Dorithy, and J. S. Suri, Automatic identification of epileptic EEG signals using nonlinear parameters. J. Mech. Med. Biol. 9, 539 (2009).
    • (2009) J. Mech. Med. Biol. , vol.9 , pp. 539
    • Acharya, U.R.1    Chua, C.K.2    Lim, T.C.3    Dorithy4    Suri, J.S.5
  • 23
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using higher order spectra
    • C. K. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, Automatic identification of epileptic EEG signals using higher order spectra. J. Eng. Med. 223, 485 (2009).
    • (2009) J. Eng. Med. , vol.223 , pp. 485
    • Chua, C.K.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 24
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters
    • O. Faust, U.R. Acharya, C. M. Lim, and B. Sputh, Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int. J. Neural Syst. 20, 159 (2010).
    • (2010) Int. J. Neural Syst. , vol.20 , pp. 159
    • Faust, O.1    Acharya, U.R.2    Lim, C.M.3    Sputh, B.4
  • 25
    • 84859217391 scopus 로고    scopus 로고
    • Use of principal component analysis for automatic detection of epileptic EEG activities
    • U. R. Acharya, S. Vinitha, and J. S. Suri, Use of principal component analysis for automatic detection of epileptic EEG activities. Expert Syst. Appl. 39, 9072 (2012).
    • (2012) Expert Syst. Appl. , vol.39 , pp. 9072
    • Acharya, U.R.1    Vinitha, S.2    Suri, J.S.3
  • 27
    • 80053348045 scopus 로고    scopus 로고
    • Automatic detection of epileptic EEG signals using higher order cumulant features
    • U. R. Acharya, S. Vinitha, and J. S. Suri, Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 21, 1 (2011).
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 1
    • Acharya, U.R.1    Vinitha, S.2    Suri, J.S.3
  • 29
    • 80051604698 scopus 로고    scopus 로고
    • Dispersion measures and entropy for seizure detection
    • Prague, May
    • M. Bedeeuzzaman, O. Farooq, and Y. U. Khan, Dispersion Measures and Entropy for Seizure Detection, IEEE-ICASSP-2011, Prague, May (2011), pp. 159-163.
    • (2011) IEEE-ICASSP-2011 , pp. 159-163
    • Bedeeuzzaman, M.1    Farooq, O.2    Khan, Y.U.3
  • 30
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • U. R. Acharya, S. Vinitha, S. Chattopadhyay, W. Yu, and A. P. C. Alvin, Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 21, 199 (2011).
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 199
    • Acharya, U.R.1    Vinitha, S.2    Chattopadhyay, S.3    Yu, W.4    Alvin, A.P.C.5
  • 31
  • 32
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Y. U. Khan and J. Gotman, Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898 (2003).
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898
    • Khan, Y.U.1    Gotman, J.2
  • 33
    • 16844376435 scopus 로고    scopus 로고
    • Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
    • M. K. Kiymik, I. Guler, A. Dizibuyuk, and M. Akin, Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35, 603 (2005).
    • (2005) Comput. Biol. Med. , vol.35 , pp. 603
    • Kiymik, M.K.1    Guler, I.2    Dizibuyuk, A.3    Akin, M.4
  • 34
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084 (2007).
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084
    • Subasi, A.1
  • 35
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak, Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027 (2009).
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2027
    • Ocak, H.1
  • 36
    • 84877839633 scopus 로고    scopus 로고
    • Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations
    • (Doi: 10.1177/0954411912467883)
    • U. R. Acharya, R. Yanti, G. Swapna, V. S. Sree, R. J. Martis, and J. S. Suri, Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations, Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng. Med. (2012), (Doi: 10.1177/0954411912467883)
    • (2012) Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng. Med
    • Acharya, U.R.1    Yanti, R.2    Swapna, G.3    Sree, V.S.4    Martis, R.J.5    Suri, J.S.6
  • 38
    • 78651527055 scopus 로고    scopus 로고
    • Autoregressive features based classification for seizure detection using neural network in scalp electroencephalogram
    • Y. U. Khan and O. Farooq, Autoregressive features based classification for seizure detection using neural network in scalp electroencephalogram. Int. J. Biomed. Eng. Technol. 2, 370 (2009).
    • (2009) Int. J. Biomed. Eng. Technol. , vol.2 , pp. 370
    • Khan, Y.U.1    Farooq, O.2
  • 39
    • 84881240872 scopus 로고    scopus 로고
    • Accessed June
    • http://www.meb.unibonn.de/epileptologie/science/physik/eegdata; Accessed June (2012).
    • (2012)
  • 40
    • 84867708872 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64, 1 (2010).
    • (2010) Phys. Rev. e , vol.64 , pp. 1
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 41
    • 0032796009 scopus 로고    scopus 로고
    • Wavelet analysis of neuroelectric waveforms: A conceptual tutorial
    • Vincent J. Samar, Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain Lang. 66, 7 (1999).
    • (1999) Brain Lang. , vol.66 , pp. 7
    • Samar, V.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.