메뉴 건너뛰기




Volumn , Issue , 2010, Pages 593-598

Multi-Label Learning with Weak Label

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84881247382     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (47)

References (25)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7:2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multilabelled classification
    • Elisseeff, A., and Weston, J. 2002. A kernel method for multilabelled classification. In NIPS 14. 681-687.
    • (2002) NIPS , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 4
    • 58149180961 scopus 로고    scopus 로고
    • Learning classifiers from only positive and unlabeled data
    • Elkan, C., and Noto, K. 2008. Learning classifiers from only positive and unlabeled data. In KDD, 213-220.
    • (2008) KDD , pp. 213-220
    • Elkan, C.1    Noto, K.2
  • 6
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Ghamrawi, N., and McCallum, A. 2005. Collective multi-label classification. In CIKM, 195-200.
    • (2005) CIKM , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 7
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • Ji, S.; Tang, L.; Yu, S.; and Ye, J. 2008. Extracting shared subspace for multi-label classification. In KDD, 381-389.
    • (2008) KDD , pp. 381-389
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 8
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Joachims, T. 1998. Text categorization with support vector machines: learning with many relevant features. In ECML, 137-142.
    • (1998) ECML , pp. 137-142
    • Joachims, T.1
  • 9
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistics regression
    • Lee, W. S., and Liu, B. 2003. Learning with positive and unlabeled examples using weighted logistics regression. In ICML, 448-455.
    • (2003) ICML , pp. 448-455
    • Lee, W. S.1    Liu, B.2
  • 10
    • 84880798303 scopus 로고    scopus 로고
    • Learning to classify texts using positive and unlabeled data
    • Li, X., and Liu, B. 2003. Learning to classify texts using positive and unlabeled data. In IJCAI, 587-594.
    • (2003) IJCAI , pp. 587-594
    • Li, X.1    Liu, B.2
  • 11
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin, H.-T.; Lin, C.-J.; and Weng, R. C. 2007. A note on Platt's probabilistic outputs for support vector machines. Machine Learning 68(3):267-276.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R. C.3
  • 12
    • 26944467374 scopus 로고    scopus 로고
    • Building text classifiers using positive and unlabeled examples
    • Liu, B.; Dai, Y.; Li, X.; Lee, W. S.; and Yu, P. S. 2003. Building text classifiers using positive and unlabeled examples. In ICDM, 19-22.
    • (2003) ICDM , pp. 19-22
    • Liu, B.1    Dai, Y.2    Li, X.3    Lee, W. S.4    Yu, P. S.5
  • 13
    • 77958559950 scopus 로고    scopus 로고
    • Learning the optimal neighborhood kernel for classification
    • Liu, J.; Chen, J.; Chen, S.; and Ye, J. 2009. Learning the optimal neighborhood kernel for classification. In IJCAI, 1144-1149.
    • (2009) IJCAI , pp. 1144-1149
    • Liu, J.1    Chen, J.2    Chen, S.3    Ye, J.4
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf, B.; Burges, C. J. C.; and Smola, A. J., eds., MIT Press
    • Platt, J. C. 1999. Fast training of support vector machines using sequential minimal optimization. In Schölkopf, B.; Burges, C. J. C.; and Smola, A. J., eds., Advances in Kernel Methods. MIT Press. 185-208.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J. C.1
  • 16
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire, R. E., and Singer, Y. 2000. BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2-3):135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R. E.1    Singer, Y.2
  • 18
    • 65449185036 scopus 로고    scopus 로고
    • Hypergraph spectral learning for multi-label classification
    • Sun, L.; Ji, S.; and Ye, J. 2008. Hypergraph spectral learning for multi-label classification. In KDD, 668-676.
    • (2008) KDD , pp. 668-676
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 19
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • Ueda, N., and Saito, K. 2003. Parametric mixture models for multi-labeled text. In NIPS 15. 721-728.
    • (2003) NIPS , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 20
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification
    • Yan, R.; Těsić, J.; and Smith, J. R. 2007. Model-shared subspace boosting for multi-label classification. In KDD, 834-843.
    • (2007) KDD , pp. 834-843
    • Yan, R.1    Těsić, J.2    Smith, J. R.3
  • 21
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang, Y. 1999. An evaluation of statistical approaches to text categorization. Information Retrieval 1(1-2):69-90.
    • (1999) Information Retrieval , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 22
    • 33947681316 scopus 로고    scopus 로고
    • ML-kNN: A lazy learning approach to multi-label learning
    • Zhang, M.-L., and Zhou, Z.-H. 2007. ML-kNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7):2038-2048.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 25
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • Zhu, S.; Ji, X.; Xu, W.; and Gong, Y. 2005. Multi-labelled classification using maximum entropy method. In SIGIR, 274-281.
    • (2005) SIGIR , pp. 274-281
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.