-
1
-
-
0029007855
-
The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation
-
Hsu H, Xiong J, and Goeddel DV (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504.
-
(1995)
Cell
, vol.81
, pp. 495-504
-
-
Hsu, H.1
Xiong, J.2
Goeddel, D.V.3
-
2
-
-
84863272549
-
The role of TRADD in death receptor signaling
-
Pobezinskaya YL and Liu Z (2012). The role of TRADD in death receptor signaling. Cell Cycle 11, 871-876.
-
(2012)
Cell Cycle
, vol.11
, pp. 871-876
-
-
Pobezinskaya, Y.L.1
Liu, Z.2
-
3
-
-
85047692516
-
Signalling pathways of the TNF superfamily: A doubleedged sword
-
Aggarwal BB (2003). Signalling pathways of the TNF superfamily: a doubleedged sword. Nat Rev Immunol 3, 745-756.
-
(2003)
Nat Rev Immunol
, vol.3
, pp. 745-756
-
-
Aggarwal, B.B.1
-
4
-
-
50449088575
-
Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors
-
Chen NJ, Chio II, Lin WJ, Duncan G, Chau H, Katz D, Huang HL, Pike KA, Hao Z., Su YW, et al. (2008). Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc Natl Acad Sci USA 105, 12429-12434.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 12429-12434
-
-
Chen, N.J.1
Chio II2
Lin, W.J.3
Duncan, G.4
Chau, H.5
Katz, D.6
Huang, H.L.7
Pike, K.A.8
Hao, Z.9
Su, Y.W.10
-
5
-
-
0030032106
-
TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways
-
Hsu H, Shu HB, Pan MG, and Goeddel DV (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308.
-
(1996)
Cell
, vol.84
, pp. 299-308
-
-
Hsu, H.1
Shu, H.B.2
Pan, M.G.3
Goeddel, D.V.4
-
6
-
-
0041853690
-
Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes
-
Micheau O and Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190.
-
(2003)
Cell
, vol.114
, pp. 181-190
-
-
Micheau, O.1
Tschopp, J.2
-
7
-
-
0037054549
-
Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms
-
Morgan M, Thorburn J, Pandolfi PP, and Thorburn A (2002). Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms. J Cell Biol 157, 975-984.
-
(2002)
J Cell Biol
, vol.157
, pp. 975-984
-
-
Morgan, M.1
Thorburn, J.2
Pandolfi, P.P.3
Thorburn, A.4
-
8
-
-
84861592640
-
TRADD contributes to tumour suppression by regulating ULF-dependent p19Arf ubiquitylation
-
Chio II, Sasaki M, Ghazarian D, Moreno J, Done S, Ueda T, Inoue S, Chang YL, Chen N. J, and Mak TW (2012). TRADD contributes to tumour suppression by regulating ULF-dependent p19Arf ubiquitylation. Nat Cell Biol 14, 625-633.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 625-633
-
-
Chio, I.I.1
Sasaki, M.2
Ghazarian, D.3
Moreno, J.4
Done, S.5
Ueda, T.6
Inoue, S.7
Chang, Y.L.8
Chen, N.J.9
Mak, T.W.10
-
9
-
-
1142275268
-
TRADD interacts with STAT1-α and influences interferon-γ signaling
-
Wesemann DR, Qin H, Kokorina N, and Benveniste EN (2004). TRADD interacts with STAT1-α and influences interferon-γ signaling. Nat Immunol 5, 199-207.
-
(2004)
Nat Immunol
, vol.5
, pp. 199-207
-
-
Wesemann, D.R.1
Qin, H.2
Kokorina, N.3
Benveniste, E.N.4
-
10
-
-
0034947033
-
Assignment of TRADD to human chromosome band 16q22 by in situ hybridization
-
Scheuerpflug CG, Lichter P, Debatin KM, and Mincheva A (2001). Assignment of TRADD to human chromosome band 16q22 by in situ hybridization. Cytogenet Cell Genet 92, 347-348.
-
(2001)
Cytogenet Cell Genet
, vol.92
, pp. 347-348
-
-
Scheuerpflug, C.G.1
Lichter, P.2
Debatin, K.M.3
Mincheva, A.4
-
11
-
-
0032601052
-
Descriptive epidemiology of primary brain and CNS tumors: Results from the Central Brain Tumor Registry of the United States, 1990-1994
-
Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, and Davis FG (1999). Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro Oncol 1, 14-25.
-
(1999)
Neuro Oncol
, vol.1
, pp. 14-25
-
-
Surawicz, T.S.1
McCarthy, B.J.2
Kupelian, V.3
Jukich, P.J.4
Bruner, J.M.5
Davis, F.G.6
-
12
-
-
32944479646
-
Therapeutic advances in the treatment of glioblastoma: Rationale and potential role of targeted agents
-
Reardon DA and Wen PY (2006). Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 11, 152-164.
-
(2006)
Oncologist
, vol.11
, pp. 152-164
-
-
Reardon, D.A.1
Wen, P.Y.2
-
13
-
-
33644820339
-
Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis
-
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro J. M, Colman H, Soroceanu L, et al. (2006). Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157-173.
-
(2006)
Cancer Cell
, vol.9
, pp. 157-173
-
-
Phillips, H.S.1
Kharbanda, S.2
Chen, R.3
Forrest, W.F.4
Soriano, R.H.5
Wu, T.D.6
Misra, A.7
Nigro, J.M.8
Colman, H.9
Soroceanu, L.10
-
14
-
-
5044224775
-
DNA-microarray analysis of brain cancer: Molecular classification for therapy
-
Mischel PS, Cloughesy TF, and Nelson SF (2004). DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5, 782-792.
-
(2004)
Nat Rev Neurosci
, vol.5
, pp. 782-792
-
-
Mischel, P.S.1
Cloughesy, T.F.2
Nelson, S.F.3
-
15
-
-
75149195336
-
The transcriptional network for mesenchymal transformation of brain tumours
-
Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne S. L, Doetsch F, Colman H, et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318-325.
-
(2010)
Nature
, vol.463
, pp. 318-325
-
-
Carro, M.S.1
Lim, W.K.2
Alvarez, M.J.3
Bollo, R.J.4
Zhao, X.5
Snyder, E.Y.6
Sulman, E.P.7
Anne, S.L.8
Doetsch, F.9
Colman, H.10
-
16
-
-
73649123907
-
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
-
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110.
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.1
Hoadley, K.A.2
Purdom, E.3
Wang, V.4
Qi, Y.5
Wilkerson, M.D.6
Miller, C.R.7
Ding, L.8
Golub, T.9
Mesirov, J.P.10
-
17
-
-
70849122697
-
Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations
-
Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, and Holland E (2009). Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4, e7752.
-
(2009)
PLoS One
, vol.4
-
-
Brennan, C.1
Momota, H.2
Hambardzumyan, D.3
Ozawa, T.4
Tandon, A.5
Pedraza, A.6
Holland, E.7
-
18
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H., Siu IM, Gallia GL, et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812.
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
Jones, S.2
Zhang, X.3
Lin, J.C.4
Leary, R.J.5
Angenendt, P.6
Mankoo, P.7
Carter, H.8
Siu, I.M.9
Gallia, G.L.10
-
19
-
-
54549108740
-
Comprehensive genomic characterization defines human glioblastoma genes and core pathways
-
Cancer Genome Atlas Research Network
-
Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068.
-
(2008)
Nature
, vol.455
, pp. 1061-1068
-
-
-
20
-
-
0036546501
-
NF-κB in cancer: From innocent bystander to major culprit
-
Karin M, Cao Y, Greten FR, and Li ZW (2002). NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2, 301-310.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 301-310
-
-
Karin, M.1
Cao, Y.2
Greten, F.R.3
Li, Z.W.4
-
22
-
-
84875684114
-
Interleukin-1β promotes ovarian tumorigenesis through a p53/ NF-κB-mediated inflammatory response in stromal fibroblasts
-
Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, and Liu J (2013). Interleukin-1β promotes ovarian tumorigenesis through a p53/ NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15, 409-420.
-
(2013)
Neoplasia
, vol.15
, pp. 409-420
-
-
Schauer, I.G.1
Zhang, J.2
Xing, Z.3
Guo, X.4
Mercado-Uribe, I.5
Sood, A.K.6
Huang, P.7
Liu, J.8
-
23
-
-
84859149259
-
IκB kinases modulate the activity of the androgen receptor in prostate carcinoma cell lines
-
Jain G, Voogdt C, Tobias A, Spindler KD, Moller P, Cronauer MV, and Marienfeld R. B (2012). IκB kinases modulate the activity of the androgen receptor in prostate carcinoma cell lines. Neoplasia 14, 178-189.
-
(2012)
Neoplasia
, vol.14
, pp. 178-189
-
-
Jain, G.1
Voogdt, C.2
Tobias, A.3
Spindler, K.D.4
Moller, P.5
Cronauer, M.V.6
Marienfeld, R.B.7
-
24
-
-
84871586311
-
p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases
-
Thomasova D, Mulay SR, Bruns H, and Anders HJ (2012). p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 14, 1097-1101.
-
(2012)
Neoplasia
, vol.14
, pp. 1097-1101
-
-
Thomasova, D.1
Mulay, S.R.2
Bruns, H.3
Anders, H.J.4
-
25
-
-
66149128126
-
The receptor interacting protein 1 inhibits p53 induction through NF-κB activation and confers a worse prognosis in glioblastoma
-
Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, Ramnarain DB, Xiao G, Saha D, Boothman DA, et al. (2009). The receptor interacting protein 1 inhibits p53 induction through NF-κB activation and confers a worse prognosis in glioblastoma. Cancer Res 69, 2809-2816.
-
(2009)
Cancer Res
, vol.69
, pp. 2809-2816
-
-
Park, S.1
Hatanpaa, K.J.2
Xie, Y.3
Mickey, B.E.4
Madden, C.J.5
Raisanen, J.M.6
Ramnarain, D.B.7
Xiao, G.8
Saha, D.9
Boothman, D.A.10
-
26
-
-
79951844223
-
NFKBIA deletion in glioblastomas
-
Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP, Yu IL, Carro MS, Dai F, Tagge MJ, et al. (2011). NFKBIA deletion in glioblastomas. N Engl J Med 364, 627-637.
-
(2011)
N Engl J Med
, vol.364
, pp. 627-637
-
-
Bredel, M.1
Scholtens, D.M.2
Yadav, A.K.3
Alvarez, A.A.4
Renfrow, J.J.5
Chandler, J.P.6
Yu, I.L.7
Carro, M.S.8
Dai, F.9
Tagge, M.J.10
-
27
-
-
0032559962
-
Epidermal growth factor activation of NF-κB is mediated through IκBα degradation and intracellular free calcium
-
Sun L and Carpenter G (1998). Epidermal growth factor activation of NF-κB is mediated through IκBα degradation and intracellular free calcium. Oncogene 16, 2095-2102.
-
(1998)
Oncogene
, vol.16
, pp. 2095-2102
-
-
Sun, L.1
Carpenter, G.2
-
28
-
-
0035937845
-
The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-κB (NF-κB)-inducing kinase to activate NF-κB. Identification of a novel receptor-tyrosine kinase signalosome
-
Habib AA, Chatterjee S, Park SK, Ratan RR, Lefebvre S, and Vartanian T (2001). The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-κB (NF-κB)-inducing kinase to activate NF-κB. Identification of a novel receptor-tyrosine kinase signalosome. J Biol Chem 276, 8865-8874.
-
(2001)
J Biol Chem
, vol.276
, pp. 8865-8874
-
-
Habib, A.A.1
Chatterjee, S.2
Park, S.K.3
Ratan, R.R.4
Lefebvre, S.5
Vartanian, T.6
-
29
-
-
0034682527
-
Epidermal growth factor-induced nuclear factor κB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells
-
Biswas DK, Cruz AP, Gansberger E, and Pardee AB (2000). Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA 97, 8542-8547.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 8542-8547
-
-
Biswas, D.K.1
Cruz, A.P.2
Gansberger, E.3
Pardee, A.B.4
-
30
-
-
77956868654
-
Epidermal growth factor receptor (EGFR) in glioma: Signal transduction, neuropathology, imaging and radioresistance
-
Hatanpaa KJ, Burma S, Zhao D, and Habib AA (2010). Epidermal growth factor receptor (EGFR) in glioma: signal transduction, neuropathology, imaging and radioresistance. Neoplasia 12, 675-684.
-
(2010)
Neoplasia
, vol.12
, pp. 675-684
-
-
Hatanpaa, K.J.1
Burma, S.2
Zhao, D.3
Habib, A.A.4
-
31
-
-
84867148708
-
Looking in the miR-ror: TGF-β-mediated activation of NF-κB in glioma
-
Eyler CE and Rich JN (2012). Looking in the miR-ror: TGF-β-mediated activation of NF-κB in glioma. J Clin Invest 122, 3473-3475.
-
(2012)
J Clin Invest
, vol.122
, pp. 3473-3475
-
-
Eyler, C.E.1
Rich, J.N.2
-
32
-
-
77649100933
-
Targeting A20 decreases glioma stem cell survival and tumor growth
-
Hjelmeland AB, Wu Q, Wickman S, Eyler C, Heddleston J, Shi Q, Lathia JD, Macswords J., Lee J, McLendon RE, et al. (2010). Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 8, e1000319.
-
(2010)
PLoS Biol
, vol.8
-
-
Hjelmeland, A.B.1
Wu, Q.2
Wickman, S.3
Eyler, C.4
Heddleston, J.5
Shi, Q.6
Lathia, J.D.7
McSwords, J.8
Lee, J.9
McLendon, R.E.10
-
33
-
-
66249138523
-
RIP1 activates PI3K-Akt via a dual mechanism involving NF-κB-mediated inhibition of the mTOR-S6KIRS1 negative feedback loop and down-regulation of PTEN
-
Park S, Zhao D, Hatanpaa KJ, Mickey BE, Saha D, Boothman DA, Story MD, Wong E. T, Burma S, Georgescu MM, et al. (2009). RIP1 activates PI3K-Akt via a dual mechanism involving NF-κB-mediated inhibition of the mTOR-S6KIRS1 negative feedback loop and down-regulation of PTEN. Cancer Res 69, 4107-4111.
-
(2009)
Cancer Res
, vol.69
, pp. 4107-4111
-
-
Park, S.1
Zhao, D.2
Hatanpaa, K.J.3
Mickey, B.E.4
Saha, D.5
Boothman, D.A.6
Story, M.D.7
Wong, E.T.8
Burma, S.9
Georgescu, M.M.10
-
34
-
-
9244241576
-
Identification of human brain tumour initiating cells
-
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano M. D, and Dirks PB (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401.
-
(2004)
Nature
, vol.432
, pp. 396-401
-
-
Singh, S.K.1
Hawkins, C.2
Clarke, I.D.3
Squire, J.A.4
Bayani, J.5
Hide, T.6
Henkelman, R.M.7
Cusimano, M.D.8
Dirks, P.B.9
-
36
-
-
33646358694
-
Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines
-
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391-403.
-
(2006)
Cancer Cell
, vol.9
, pp. 391-403
-
-
Lee, J.1
Kotliarova, S.2
Kotliarov, Y.3
Li, A.4
Su, Q.5
Donin, N.M.6
Pastorino, S.7
Purow, B.W.8
Christopher, N.9
Zhang, W.10
-
37
-
-
80051800349
-
Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo
-
Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B., Grande L, Casafont I, Segura V, Robles EF, et al. (2011). Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30, 3537-3548.
-
(2011)
Oncogene
, vol.30
, pp. 3537-3548
-
-
Nogueira, L.1
Ruiz-Ontanon, P.2
Vazquez-Barquero, A.3
Lafarga, M.4
Berciano, M.T.5
Aldaz, B.6
Grande, L.7
Casafont, I.8
Segura, V.9
Robles, E.F.10
-
38
-
-
0037329233
-
IKKα regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf
-
Albanese C, Wu K, D'Amico M, Jarrett C, Joyce D, Hughes J, Hulit J, Sakamaki T, Fu M, Ben-Ze'ev A, et al. (2003). IKKα regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol Biol Cell 14, 585-599.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 585-599
-
-
Albanese, C.1
Wu, K.2
D'Amico, M.3
Jarrett, C.4
Joyce, D.5
Hughes, J.6
Hulit, J.7
Sakamaki, T.8
Fu, M.9
Ben-Ze'ev, A.10
-
39
-
-
0035861314
-
IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development
-
Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, and Karin M (2001). IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763-775.
-
(2001)
Cell
, vol.107
, pp. 763-775
-
-
Cao, Y.1
Bonizzi, G.2
Seagroves, T.N.3
Greten, F.R.4
Johnson, R.5
Schmidt, E.V.6
Karin, M.7
-
40
-
-
33749165933
-
RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival
-
Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M Jr, et al. (2006). RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127, 157-170.
-
(2006)
Cell
, vol.127
, pp. 157-170
-
-
Chien, Y.1
Kim, S.2
Bumeister, R.3
Loo, Y.M.4
Kwon, S.W.5
Johnson, C.L.6
Balakireva, M.G.7
Romeo, Y.8
Kopelovich, L.9
Gale Jr., M.10
-
41
-
-
4344612243
-
NF-κB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression
-
Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N., Beug H, and Wirth T (2004). NF-κB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 569-581.
-
(2004)
J Clin Invest
, vol.114
, pp. 569-581
-
-
Huber, M.A.1
Azoitei, N.2
Baumann, B.3
Grunert, S.4
Sommer, A.5
Pehamberger, H.6
Kraut, N.7
Beug, H.8
Wirth, T.9
-
42
-
-
33845768987
-
Integrating cell-signalling pathways with NF-κB and IKK function
-
Perkins ND (2007). Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8, 49-62.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 49-62
-
-
Perkins, N.D.1
-
43
-
-
33748052706
-
IKKα controls p52/RelB at the skp2 gene promoter to regulate G1-to S-phase progression
-
Schneider G, Saur D, Siveke JT, Fritsch R, Greten FR, and Schmid RM (2006). IKKα controls p52/RelB at the skp2 gene promoter to regulate G1-to S-phase progression. EMBO J 25, 3801-3812.
-
(2006)
EMBO J
, vol.25
, pp. 3801-3812
-
-
Schneider, G.1
Saur, D.2
Siveke, J.T.3
Fritsch, R.4
Greten, F.R.5
Schmid, R.M.6
-
44
-
-
4544342570
-
Nuclear factor-κB: The enemy within
-
Aggarwal BB (2004). Nuclear factor-κB: the enemy within. Cancer Cell 6, 203-208.
-
(2004)
Cancer Cell
, vol.6
, pp. 203-208
-
-
Aggarwal, B.B.1
-
45
-
-
0033596121
-
Activators and target genes of Rel/NF-κB transcription factors
-
Pahl HL (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853-6866.
-
(1999)
Oncogene
, vol.18
, pp. 6853-6866
-
-
Pahl, H.L.1
-
46
-
-
0033403196
-
Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor κB activation
-
Kirillova I, Chaisson M, and Fausto N (1999). Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor κB activation. Cell Growth Differ 10, 819-828.
-
(1999)
Cell Growth Differ
, vol.10
, pp. 819-828
-
-
Kirillova, I.1
Chaisson, M.2
Fausto, N.3
-
47
-
-
0032588170
-
NF-κB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition
-
Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, and Strauss M (1999). NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19, 2690-2698.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 2690-2698
-
-
Hinz, M.1
Krappmann, D.2
Eichten, A.3
Heder, A.4
Scheidereit, C.5
Strauss, M.6
-
48
-
-
0034676269
-
The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells
-
Kim DW, Gazourian L, Quadri SA, Romieu-Mourez R, Sherr DH, and Sonenshein G. E (2000). The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene 19, 5498-5506.
-
(2000)
Oncogene
, vol.19
, pp. 5498-5506
-
-
Kim, D.W.1
Gazourian, L.2
Quadri, S.A.3
Romieu-Mourez, R.4
Sherr, D.H.5
Sonenshein, G.E.6
|