-
3
-
-
0036856515
-
Ant colony optimization for learning Bayesian networks
-
Campos, L. M., Gámez, J. A., & Puerta, J. M. (2002). Ant colony optimization for learning Bayesian networks. Journal of Approximate Reasoning, 31, 291-311.
-
(2002)
Journal of Approximate Reasoning
, vol.31
, pp. 291-311
-
-
Campos, L.M.1
Gámez, J.A.2
Puerta, J.M.3
-
6
-
-
0003846047
-
Learning Bayesian networks is NP-hard (Technical Report)
-
Chickering, D., Geiger, M., & Heckerman, D. (1994). Learning Bayesian networks is NP-hard (Technical Report). Advanced Technologies Division, Microsoft Corporation, Redmond, WA.
-
(1994)
Advanced Technologies Division, Microsoft Corporation, Redmond, WA
-
-
Chickering, D.1
Geiger, M.2
Heckerman, D.3
-
8
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-348.
-
(1992)
Machine Learning
, vol.9
, pp. 309-348
-
-
Cooper, G.F.1
Herskovits, E.2
-
10
-
-
68349117241
-
Learning Bayesian network equivalence classes with ant colony optimization
-
Daly, R., & Shen, Q. (2009). Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research, 35, 391-447.
-
(2009)
Journal of Artificial Intelligence Research
, vol.35
, pp. 391-447
-
-
Daly, R.1
Shen, Q.2
-
11
-
-
79959427276
-
Using ant colony optimization in learning Bayesian network equivalence classes
-
Palo Alto: AAAI Press
-
Daly, R., Shen, Q., & Aitken, S. (2006). Using ant colony optimization in learning Bayesian network equivalence classes. In UK workshop on computational intelligence (UKCI) (pp. 111-118). Palo Alto: AAAI Press.
-
(2006)
UK Workshop on Computational Intelligence (UKCI)
, pp. 111-118
-
-
Daly, R.1
Shen, Q.2
Aitken, S.3
-
12
-
-
29644438050
-
Statistical comparisons of classifiers over multiple datasets
-
Demšar, J. (2006). Statistical comparisons of classifiers over multiple datasets. Journal of Machine Learning Research, 7, 1-30.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
13
-
-
0002012598
-
The ant colony optimization meta-heuristic
-
New York: McGraw-Hill
-
Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In New ideas in optimization (Vol. 2, pp. 11-32). New York: McGraw-Hill.
-
(1999)
New Ideas in Optimization
, vol.2
, pp. 11-32
-
-
Dorigo, M.1
Di Caro, G.2
-
15
-
-
0030082551
-
Ant system: optimization by a colony of cooperating agents
-
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 26, 29-41.
-
(1996)
IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics
, vol.26
, pp. 29-41
-
-
Dorigo, M.1
Maniezzo, V.2
Colorni, A.3
-
16
-
-
0033084695
-
Ant algorithms for discrete optimization
-
Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137-172.
-
(1999)
Artificial Life
, vol.5
, Issue.2
, pp. 137-172
-
-
Dorigo, M.1
Di Caro, G.2
Gambardella, L.M.3
-
17
-
-
76849104444
-
On the importance of comprehensible classification models for protein function prediction
-
Freitas, A. A., Wieser, D. C., & Apweiler, R. (2010). On the importance of comprehensible classification models for protein function prediction. ACM/IEEE Transactions on Computational Biology and Bioinformatics, 7, 172-182.
-
(2010)
ACM/IEEE Transactions on Computational Biology and Bioinformatics
, vol.7
, pp. 172-182
-
-
Freitas, A.A.1
Wieser, D.C.2
Apweiler, R.3
-
18
-
-
0000220520
-
Learning Bayesian networks with local structure
-
Norwell: Kluwer
-
Friedman, N., & Goldszmidt, M. (1998). Learning Bayesian networks with local structure. In Learning in graphical models (pp. 421-460). Norwell: Kluwer.
-
(1998)
Learning in Graphical Models
, pp. 421-460
-
-
Friedman, N.1
Goldszmidt, M.2
-
19
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-161.
-
(1997)
Machine Learning
, vol.29
, pp. 131-161
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
20
-
-
58149287952
-
An extension on statistical comparisons of classifiers over multiple datasets for all pairwise comparisons
-
García, S., & Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple datasets for all pairwise comparisons. Journal of Machine Learning Research, 9, 2677-2694.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
21
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197-244.
-
(1995)
Machine Learning
, vol.20
, pp. 197-244
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
22
-
-
79951515446
-
An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
-
Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., & Baesens, B. (2011). An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems, 51, 141-154.
-
(2011)
Decision Support Systems
, vol.51
, pp. 141-154
-
-
Huysmans, J.1
Dejaeger, K.2
Mues, C.3
Vanthienen, J.4
Baesens, B.5
-
24
-
-
79954601044
-
A hybrid method for learning Bayesian networks based on ant colony optimization
-
Ji, J., Hu, R., Zhang, H., & Liu, C. (2011). A hybrid method for learning Bayesian networks based on ant colony optimization. Applied Soft Computing, 11, 3373-3384.
-
(2011)
Applied Soft Computing
, vol.11
, pp. 3373-3384
-
-
Ji, J.1
Hu, R.2
Zhang, H.3
Liu, C.4
-
25
-
-
38049071708
-
Survey of improving naive Bayes for classification
-
LNCS, Heidelberg: Springer
-
Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of improving naive Bayes for classification. In LNCS: Vol. 4632. International conference on advanced data mining and applications (pp. 134-145). Heidelberg: Springer.
-
(2007)
International Conference on Advanced Data Mining and Applications
, vol.4632
, pp. 134-145
-
-
Jiang, L.1
Wang, D.2
Cai, Z.3
Yan, X.4
-
26
-
-
0002610991
-
Learning augmented Bayesian classifiers: a comparison of distribution-based and classification-based approaches
-
San Francisco: Morgan Kaufmann
-
Keogh, E., & Pazzani, M. (1999). Learning augmented Bayesian classifiers: a comparison of distribution-based and classification-based approaches. In International workshop on artificial intelligence and statistics (pp. 225-230). San Francisco: Morgan Kaufmann.
-
(1999)
International Workshop on Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.1
Pazzani, M.2
-
29
-
-
80052936929
-
Performance of classification models from a user perspective
-
Marteens, D., Vanthienen, J., Verbeke, W., & Baesens, B. (2011). Performance of classification models from a user perspective. Decision Support Systems, 51, 782-793.
-
(2011)
Decision Support Systems
, vol.51
, pp. 782-793
-
-
Marteens, D.1
Vanthienen, J.2
Verbeke, W.3
Baesens, B.4
-
30
-
-
34948865765
-
Classification with ant colony optimization
-
Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck, M., & Baesens, B. (2007). Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation, 11, 651-665.
-
(2007)
IEEE Transactions on Evolutionary Computation
, vol.11
, pp. 651-665
-
-
Martens, D.1
Backer, M.D.2
Haesen, R.3
Vanthienen, J.4
Snoeck, M.5
Baesens, B.6
-
31
-
-
78650705743
-
Editorial survey: swarm intelligence for data mining
-
Martens, D., Baesens, B., & Fawcett, T. (2011). Editorial survey: swarm intelligence for data mining. Machine Learning, 82, 1-42.
-
(2011)
Machine Learning
, vol.82
, pp. 1-42
-
-
Martens, D.1
Baesens, B.2
Fawcett, T.3
-
32
-
-
56449120614
-
cAnt-Miner: an ant colony classification algorithm to cope with continuous attributes
-
LNCS, Heidelberg: Springer
-
Otero, F., Freitas, A. A., & Johnson, C. G. (2008). cAnt-Miner: an ant colony classification algorithm to cope with continuous attributes. In LNCS: Vol. 5217. Sixth international conference on ant colony optimization and swarm intelligence (pp. 48-59). Heidelberg: Springer.
-
(2008)
Sixth International Conference on Ant Colony Optimization and Swarm Intelligence
, vol.5217
, pp. 48-59
-
-
Otero, F.1
Freitas, A.A.2
Johnson, C.G.3
-
33
-
-
0036670786
-
Data mining with an ant colony optimization algorithm
-
Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4), 321-332.
-
(2002)
IEEE Transactions on Evolutionary Computation
, vol.6
, Issue.4
, pp. 321-332
-
-
Parpinelli, R.S.1
Lopes, H.S.2
Freitas, A.A.3
-
34
-
-
0035210113
-
Acceptance of rules generated by machine learning among medical experts
-
Pazzani, M. J., Mani, S., & Shankle, W. R. (2001). Acceptance of rules generated by machine learning among medical experts. Methods of Information in Medicine, 40, 380-385.
-
(2001)
Methods of Information in Medicine
, vol.40
, pp. 380-385
-
-
Pazzani, M.J.1
Mani, S.2
Shankle, W.R.3
-
35
-
-
55749086795
-
Learning of Bayesian networks by a local discovery ant colony algorithm
-
Piscataway: IEEE Press
-
Pinto, P. C., Nägele, A., Dejori, M., Runkler, T. A., & Costa, J. M. (2008). Learning of Bayesian networks by a local discovery ant colony algorithm. In IEEE world congress on computational intelligence (pp. 2741-2748). Piscataway: IEEE Press.
-
(2008)
IEEE World Congress on Computational Intelligence
, pp. 2741-2748
-
-
Pinto, P.C.1
Nägele, A.2
Dejori, M.3
Runkler, T.A.4
Costa, J.M.5
-
36
-
-
69249179454
-
Using a local discovery ant algorithm for Bayesian network structure learning
-
Pinto, P. C., Nägele, A., Dejori, M., Runkler, T. A., & Costa, J. M. (2009). Using a local discovery ant algorithm for Bayesian network structure learning. IEEE Transactions on Evolutionary Computation, 13, 767-779.
-
(2009)
IEEE Transactions on Evolutionary Computation
, vol.13
, pp. 767-779
-
-
Pinto, P.C.1
Nägele, A.2
Dejori, M.3
Runkler, T.A.4
Costa, J.M.5
-
37
-
-
78049251857
-
Extensions to the Ant-Miner classification rule discovery algorithm
-
LNCS, Heidelberg: Springer
-
Salama, K. M., & Abdelbar, A. M. (2010). Extensions to the Ant-Miner classification rule discovery algorithm. In LNCS: Vol. 6234. 7th international conference on swarm intelligence (ANTS 2010) (pp. 43-50). Heidelberg: Springer.
-
(2010)
7th International Conference on Swarm Intelligence (ANTS 2010)
, vol.6234
, pp. 43-50
-
-
Salama, K.M.1
Abdelbar, A.M.2
-
38
-
-
79961130807
-
Exploring different rule quality evaluation functions in ACO-based classification algorithms
-
Piscataway: IEEE Press
-
Salama, K. M., & Abdelbar, A. M. (2011). Exploring different rule quality evaluation functions in ACO-based classification algorithms. In IEEE symposium on swarm intelligence (SIS) (pp. 1-8). Piscataway: IEEE Press.
-
(2011)
IEEE Symposium on Swarm Intelligence (SIS)
, pp. 1-8
-
-
Salama, K.M.1
Abdelbar, A.M.2
-
40
-
-
82355186008
-
Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm
-
Salama, K. M., Abdelbar, A. M., & Freitas, A. A. (2011). Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intelligence, 5, 149-182.
-
(2011)
Swarm Intelligence
, vol.5
, pp. 149-182
-
-
Salama, K.M.1
Abdelbar, A.M.2
Freitas, A.A.3
-
41
-
-
84869412276
-
Utilizing multiple pheromones in an ant-based algorithm for continuous-attribute classification rule discovery
-
Salama, K. M., Abdelbar, A. M., Otero, F. E., & Freitas, A. A. (2013). Utilizing multiple pheromones in an ant-based algorithm for continuous-attribute classification rule discovery. Applied Soft Computing, 13, 667-675.
-
(2013)
Applied Soft Computing
, vol.13
, pp. 667-675
-
-
Salama, K.M.1
Abdelbar, A.M.2
Otero, F.E.3
Freitas, A.A.4
-
42
-
-
84880778829
-
UCI Repository of machine learning databases
-
UCI Repository of machine learning databases. Retrieved Oct. 2011 from. http://www. ics. uci. edu/~mlearn/MLRepository. html.
-
(2011)
Retrieved
-
-
-
45
-
-
79959397993
-
Two novel ant colony optimization approaches for Bayesian network structure learning
-
Piscataway: IEEE Press
-
Yanghui, Wu., McCall, J., & Corne, D. (2010). Two novel ant colony optimization approaches for Bayesian network structure learning. In IEEE world congress on evolutionary computation (CEC 2010) (pp. 1-7). Piscataway: IEEE Press.
-
(2010)
IEEE World Congress on Evolutionary Computation (CEC 2010)
, pp. 1-7
-
-
Yanghui, W.1
McCall, J.2
Corne, D.3
|