메뉴 건너뛰기




Volumn 11, Issue 4, 2011, Pages 3373-3384

A hybrid method for learning Bayesian networks based on ant colony optimization

Author keywords

Ant colony optimization; Bayesian networks; Function; Heuristic; Simulated annealing strategy; Variable search space

Indexed keywords

ACO ALGORITHMS; ANT-COLONY OPTIMIZATION; BAYESIAN NETWORK MODELS; DEPENDENCY ANALYSIS; HEURISTIC; HEURISTIC FUNCTIONS; HYBRID METHOD; INDEPENDENCE TESTS; LEARNING BAYESIAN NETWORKS; NEAR-OPTIMAL SOLUTIONS; NETWORK LEARNING ALGORITHMS; OPTIMIZATION EFFICIENCY; OPTIMIZATION SCHEME; SEARCH PROCESS; SEARCH SPACES; SELF-ADJUSTING; STOCHASTIC SEARCH PROCESS; VARIABLE SEARCH SPACE;

EID: 79954601044     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.01.009     Document Type: Article
Times cited : (37)

References (26)
  • 1
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning Bayesian networks
    • D. Heckerman A tutorial on learning Bayesian networks M.I. Jordan, Learning in Graphical Models 1996 301 354
    • (1996) Learning in Graphical Models , pp. 301-354
    • Heckerman, D.1
  • 2
    • 0034174383 scopus 로고    scopus 로고
    • A new approach for learning belief networks using independence criteria
    • DOI 10.1016/S0888-613X(99)00042-0, PII S0888613X99000420
    • M. Luis, D. Campos, and J. Huete A new approach for learning belief networks using independence criteria International Journal of Approximate Reasoning 24 1 2000 11 37 (Pubitemid 34198912)
    • (2000) International Journal of Approximate Reasoning , vol.24 , Issue.1 , pp. 11-37
    • De Campos, L.M.1    Huete, J.F.2
  • 3
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • DOI 10.1016/S0004-3702(02)00191-1, PII S0004370202001911
    • J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu Learning belief networks from data: an information theory based approach Artificial Intelligence 137 2002 43 90 (Pubitemid 34405215)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 4
    • 0008580731 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle: Basic properties
    • J. Suzuki Learning Bayesian belief networks based on the minimum description length principle: basic properties IEICE Transactions on Fundamentals E82 10 1999 2237 2245
    • (1999) IEICE Transactions on Fundamentals , vol.82 , Issue.10 , pp. 2237-2245
    • Suzuki, J.1
  • 8
    • 0033076357 scopus 로고    scopus 로고
    • Using evolutionary programming and minimum description length principle for data mining of Bayesian networks
    • M.L. Wong, and K.S. Leung Using evolutionary programming and minimum description length principle for data mining of Bayesian networks IEEE Transactions on Pattern Analysis and Machine Intelligence 21 2 1999 174 178
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.21 , Issue.2 , pp. 174-178
    • Wong, M.L.1    Leung, K.S.2
  • 9
    • 0036132536 scopus 로고    scopus 로고
    • Searching the best elimination sequence in Bayesian networks by using ant colony optimization
    • A.G. Jose, and M.P. Jose Searching the best elimination sequence in Bayesian networks by using ant colony optimization Pattern Recognition Letters 23 1-3 2002 261 277
    • (2002) Pattern Recognition Letters , vol.23 , Issue.13 , pp. 261-277
    • Jose, A.G.1    Jose, M.P.2
  • 10
    • 63749120518 scopus 로고    scopus 로고
    • A Bayesian network learning algorithm based on independence test and ant colony optimization
    • J.Z. Ji, H.X. Zhang, R.B. Hu, and C.N. Liu A Bayesian network learning algorithm based on independence test and ant colony optimization Acta Automatica Sinica 35 3 2009 281 288
    • (2009) Acta Automatica Sinica , vol.35 , Issue.3 , pp. 281-288
    • Ji, J.Z.1    Zhang, H.X.2    Hu, R.B.3    Liu, C.N.4
  • 11
    • 4444383943 scopus 로고    scopus 로고
    • An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
    • M.L. Wong, and K.S. Leung An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach IEEE Transactions on Evolutionary Computation 8 4 2004 378 404
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.4 , pp. 378-404
    • Wong, M.L.1    Leung, K.S.2
  • 12
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • I. Tsamardinos, L.E. Brown, and C.F. Alieris The max-min hill-climbing Bayesian network structure learning algorithm Machine Learning 65 1 2006 31 78 (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 15
    • 0031122887 scopus 로고    scopus 로고
    • Ant colony system: A cooperative learning approach to the traveling salesman problem
    • PII S1089778X97033031
    • M. Dorigo, and L.M. Gambardella Ant colony system: a cooperative learning approach to the traveling salesman problem IEEE Transactions Evolutionary Computation 1 1 1997 53 66 (Pubitemid 127771018)
    • (1997) IEEE Transactions on Evolutionary Computation , vol.1 , Issue.1 , pp. 53-66
    • Dorigo, M.1    Gambardella, L.M.2
  • 16
    • 17644402086 scopus 로고    scopus 로고
    • Search bias in ant colony optimization: On the role of competition-balanced systems
    • DOI 10.1109/TEVC.2004.841688
    • C. Blum, and M. Dorigo Search bias in ant colony optimization: on the role of competition-balanced systems IEEE Transactions Evolutionary Computation 9 2 2005 159 174 (Pubitemid 40564734)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.2 , pp. 159-174
    • Blum, C.1    Dorigo, M.2
  • 18
    • 0036670452 scopus 로고    scopus 로고
    • A short convergence proof for a class of ant colony optimization algorithms
    • DOI 10.1109/TEVC.2002.802444, PII 1011092002802444
    • T. Stutzle, and M. Dorigo A short convergence proof for a class of ant colony optimization algorithms IEEE Transactions Evolutionary Computation 6 4 2002 358 365 (Pubitemid 35032737)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.4 , pp. 358-365
    • Stutzle, T.1    Dorigo, M.2
  • 19
    • 33846280533 scopus 로고    scopus 로고
    • Ant colony optimization artificial ants as a computational intelligence technique
    • DOI 10.1109/CI-M.2006.248054
    • M. Dorigo, M. Birattari, and T. Stutzle Ant colony optimization: artificial ants as a computational intelligence technique IEEE Computational Intelligence Magazine 11 2006 28 39 (Pubitemid 46118248)
    • (2006) IEEE Computational Intelligence Magazine , vol.1 , Issue.4 , pp. 28-39
    • Dorigo, M.1    Birattari, M.2    Stutzle, T.3
  • 21
    • 60149087930 scopus 로고    scopus 로고
    • Multiple objective ant colony optimization
    • D. Angus, and C. Woodward Multiple objective ant colony optimization Swarm Intelligence 3 1 2009 69 85 22 (special issue on ant colony optimization)
    • (2009) Swarm Intelligence , vol.3 , Issue.1 , pp. 69-85
    • Angus, D.1    Woodward, C.2
  • 22
    • 0242634697 scopus 로고    scopus 로고
    • An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem
    • Z.J. Lee, C.Y. Lee, and S.F. Su An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem Applied Soft Computing 2 2002 39 47
    • (2002) Applied Soft Computing , vol.2 , pp. 39-47
    • Lee, Z.J.1    Lee, C.Y.2    Su, S.F.3
  • 23
    • 34548543165 scopus 로고    scopus 로고
    • Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment
    • Z.J. Lee, S.F. Su, C.C. Chuang, and K.H. Liu Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment Applied Soft Computing 8 2008 55 78
    • (2008) Applied Soft Computing , vol.8 , pp. 55-78
    • Lee, Z.J.1    Su, S.F.2    Chuang, C.C.3    Liu, K.H.4
  • 24
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.