-
1
-
-
73849098232
-
Global correlation clustering based on the hough transform
-
E. Achtert, C. Böhm, J. David, P. Kroger, and A. Zimek. Global correlation clustering based on the Hough transform. Stat. Anal. Data Min., 1(3):111-127, 2008.
-
(2008)
Stat. Anal. Data Min.
, vol.1
, Issue.3
, pp. 111-127
-
-
Achtert, E.1
Böhm, C.2
David, J.3
Kroger, P.4
Zimek, A.5
-
2
-
-
33750312873
-
Finding hierarchies of subspace clusters
-
E. Achtert, C. Böhm, H.-P. Kriegel, P. Kroger, I. Müller-Gorman, and A. Zimek. Finding hierarchies of subspace clusters. In Proc. PKDD, pages 446-453, 2006.
-
(2006)
Proc. PKDD
, pp. 446-453
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.-P.3
Kroger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
3
-
-
84864208710
-
Evaluation of clusterings - Metrics and visual support
-
E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and A. Zimek. Evaluation of clusterings - metrics and visual support. In Proc. ICDE, pages 1285-1288, 2012.
-
(2012)
Proc. ICDE
, pp. 1285-1288
-
-
Achtert, E.1
Goldhofer, S.2
Kriegel, H.-P.3
Schubert, E.4
Zimek, A.5
-
4
-
-
80052764983
-
Spatial outlier detection: Data, algorithms, visualizations
-
E. Achtert, A. Hettab, H.-P. Kriegel, E. Schubert, and A. Zimek. Spatial outlier detection: Data, algorithms, visualizations. In Proc. SSTD, pages 512-516, 2011.
-
(2011)
Proc. SSTD
, pp. 512-516
-
-
Achtert, E.1
Hettab, A.2
Kriegel, H.-P.3
Schubert, E.4
Zimek, A.5
-
5
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected clustering. In Proc. SIGMOD, pages 61-72, 1999.
-
(1999)
Proc. SIGMOD
, pp. 61-72
-
-
Aggarwal, C.C.1
Procopiuc, C.M.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
6
-
-
0039253822
-
Finding generalized projected clusters in high dimensional space
-
C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional space. In Proc. SIGMOD, pages 70-81, 2000.
-
(2000)
Proc. SIGMOD
, pp. 70-81
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
7
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD, pages 37-46, 2001.
-
(2001)
Proc. SIGMOD
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
8
-
-
0032304703
-
Similarity clustering of dimensions for an enhanced visualization of multidimensional data
-
M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proc. INFOVIS, pages 52-60, 1998.
-
(1998)
Proc. INFOVIS
, pp. 52-60
-
-
Ankerst, M.1
Berchtold, S.2
Keim, D.A.3
-
9
-
-
19544379322
-
Subspace selection for clustering high-dimensional data
-
C. Baumgartner, K. Kailing, H.-P. Kriegel, P. Kroger, and C. Plant. Subspace selection for clustering high-dimensional data. In Proc. ICDM, pages 11-18, 2004.
-
(2004)
Proc. ICDM
, pp. 11-18
-
-
Baumgartner, C.1
Kailing, K.2
Kriegel, H.-P.3
Kroger, P.4
Plant, C.5
-
10
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kroger. Density connected clustering with local subspace preferences. In Proc. ICDM, pages 27-34, 2004.
-
(2004)
Proc. ICDM
, pp. 27-34
-
-
Böhm, C.1
Kailing, K.2
Kriegel, H.-P.3
Kroger, P.4
-
11
-
-
14544300820
-
Computing clusters of correlation connected objects
-
C. Böhm, K. Kailing, P. Kroger, and A. Zimek. Computing clusters of correlation connected objects. In Proc. SIGMOD, pages 455-466, 2004.
-
(2004)
Proc. SIGMOD
, pp. 455-466
-
-
Böhm, C.1
Kailing, K.2
Kroger, P.3
Zimek, A.4
-
12
-
-
33745466049
-
An interactive 3d integration of parallel coordinates and star glyphs
-
IEEE
-
E. Fanea, S. Carpendale, and T. Isenberg. An interactive 3d integration of parallel coordinates and star glyphs. In Proc. INFOVIS, pages 149-156. IEEE, 2005.
-
(2005)
Proc. INFOVIS
, pp. 149-156
-
-
Fanea, E.1
Carpendale, S.2
Isenberg, T.3
-
13
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
-
E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21:768-769, 1965.
-
(1965)
Biometrics
, vol.21
, pp. 768-769
-
-
Forgy, E.W.1
-
14
-
-
4644223451
-
The amsterdam library of object images
-
J. M. Geusebroek, G. J. Burghouts, and A. Smeulders. The Amsterdam Library of Object Images. Int. J. Computer Vision, 61(1):103-112, 2005.
-
(2005)
Int. J. Computer Vision
, vol.61
, Issue.1
, pp. 103-112
-
-
Geusebroek, J.M.1
Burghouts, G.J.2
Smeulders, A.3
-
15
-
-
16244379742
-
Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
-
D. Guo. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2(4):232-246, 2003.
-
(2003)
Information Visualization
, vol.2
, Issue.4
, pp. 232-246
-
-
Guo, D.1
-
16
-
-
0015680481
-
Textural features for image classification
-
R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE TSAP, 3(6):610-623, 1973.
-
(1973)
IEEE TSAP
, vol.3
, Issue.6
, pp. 610-623
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.3
-
19
-
-
0025568642
-
Parallel coordinates: A tool for visualizing multi-dimensional geometry
-
A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In Proc. VIS, pages 361-378, 1990.
-
(1990)
Proc. VIS
, pp. 361-378
-
-
Inselberg, A.1
Dimsdale, B.2
-
20
-
-
33745448226
-
Revealing structure in visualizations of dense 2d and 3d parallel coordinates
-
J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure in visualizations of dense 2d and 3d parallel coordinates. Information Visualization, 5(2):125-136, 2006.
-
(2006)
Information Visualization
, vol.5
, Issue.2
, pp. 125-136
-
-
Johansson, J.1
Ljung, P.2
Jern, M.3
Cooper, M.4
-
21
-
-
84864188417
-
HiCS: High contrast subspaces for density-based outlier ranking
-
F. Keller, E. Müller, and K. Böhm. HiCS: high contrast subspaces for density-based outlier ranking. In Proc. ICDE, 2012.
-
(2012)
Proc. ICDE
-
-
Keller, F.1
Müller, E.2
Böhm, K.3
-
22
-
-
67650661596
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In Proc. PAKDD, pages 831-838, 2009.
-
(2009)
Proc. PAKDD
, pp. 831-838
-
-
Kriegel, H.-P.1
Kroger, P.2
Schubert, E.3
Zimek, A.4
-
23
-
-
84874057277
-
Outlier detection in arbitrarily oriented subspaces
-
H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek. Outlier detection in arbitrarily oriented subspaces. In Proc. ICDM, pages 379-388, 2012.
-
(2012)
Proc. ICDM
, pp. 379-388
-
-
Kriegel, H.-P.1
Kroger, P.2
Schubert, E.3
Zimek, A.4
-
24
-
-
67149084291
-
Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1): 1-58, 2009.
-
(2009)
ACM TKDD
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kroger, P.2
Zimek, A.3
-
25
-
-
84866446665
-
Subspace clustering
-
H.-P. Kriegel, P. Kroger, and A. Zimek. Subspace clustering. WIREs DMKD, 2(4):351-364, 2012.
-
(2012)
WIREs DMKD
, vol.2
, Issue.4
, pp. 351-364
-
-
Kriegel, H.-P.1
Kroger, P.2
Zimek, A.3
-
26
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In Proc. SIGMOD, pages 427-438, 2000.
-
(2000)
Proc. SIGMOD
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
27
-
-
84872406432
-
A survey on enhanced subspace clustering
-
K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A survey on enhanced subspace clustering. Data Min. Knowl. Disc, 26(2):332-397, 2013.
-
(2013)
Data Min. Knowl. Disc
, vol.26
, Issue.2
, pp. 332-397
-
-
Sim, K.1
Gopalkrishnan, V.2
Zimek, A.3
Cong, G.4
-
28
-
-
79952902092
-
Automated analytical methods to support visual exploration of high-dimensional data
-
A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, and D. Keim. Automated analytical methods to support visual exploration of high-dimensional data. IEEE TVCG, 17(5):584-597, 2011.
-
(2011)
IEEE TVCG
, vol.17
, Issue.5
, pp. 584-597
-
-
Tatu, A.1
Albuquerque, G.2
Eisemann, M.3
Bak, P.4
Theisel, H.5
Magnor, M.6
Keim, D.7
-
29
-
-
84872923174
-
Subspace search and visualization to make sense of alternative clusterings in high-dimensional data
-
A. Tatu, F. Maaß, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. A. Keim. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. In Proc. VAST, pages 63-72, 2012.
-
(2012)
Proc. VAST
, pp. 63-72
-
-
Tatu, A.1
Maaß, F.2
Färber, I.3
Bertini, E.4
Schreck, T.5
Seidl, T.6
Keim, D.A.7
-
30
-
-
0031332549
-
Visualizing the behaviour of higher dimensional dynamical systems
-
IEEE
-
R. Wegenkittl, H. Löffelmann, and E. Gröller. Visualizing the behaviour of higher dimensional dynamical systems. In Proc. VIS, pages 119-125. IEEE, 1997.
-
(1997)
Proc. VIS
, pp. 119-125
-
-
Wegenkittl, R.1
Löffelmann, H.2
Gröller, E.3
-
31
-
-
2542441481
-
Visual hierarchical dimension reduction for exploration of high dimensional datasets
-
J. Yang, M. Ward, E. Rundensteiner, and S. Huang. Visual hierarchical dimension reduction for exploration of high dimensional datasets. In Proc. Symp. Data Visualisation 2003, pages 19-28, 2003.
-
(2003)
Proc. Symp. Data Visualisation 2003
, pp. 19-28
-
-
Yang, J.1
Ward, M.2
Rundensteiner, E.3
Huang, S.4
-
32
-
-
84866458840
-
A survey on unsupervised outlier detection in high-dimensional numerical data
-
A. Zimek, E. Schubert, and H.-P. Kriegel. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min., 5(5):363-387, 2012.
-
(2012)
Stat. Anal. Data Min.
, vol.5
, Issue.5
, pp. 363-387
-
-
Zimek, A.1
Schubert, E.2
Kriegel, H.-P.3
|