메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1009-1012

Interactive data mining with 3D-parallel-coordinate-trees

Author keywords

High Dimensional Data; Parallel Coordinates; Visualization

Indexed keywords

3D VISUALIZATION; COMPLEX DATASETS; HIGH DIMENSIONAL DATA; INTERACTIVE DATA MINING; PARALLEL COORDINATES;

EID: 84880525271     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2463676.2463696     Document Type: Conference Paper
Times cited : (62)

References (32)
  • 6
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional space
    • C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional space. In Proc. SIGMOD, pages 70-81, 2000.
    • (2000) Proc. SIGMOD , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 7
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD, pages 37-46, 2001.
    • (2001) Proc. SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 8
    • 0032304703 scopus 로고    scopus 로고
    • Similarity clustering of dimensions for an enhanced visualization of multidimensional data
    • M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proc. INFOVIS, pages 52-60, 1998.
    • (1998) Proc. INFOVIS , pp. 52-60
    • Ankerst, M.1    Berchtold, S.2    Keim, D.A.3
  • 10
    • 19544386608 scopus 로고    scopus 로고
    • Density connected clustering with local subspace preferences
    • C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kroger. Density connected clustering with local subspace preferences. In Proc. ICDM, pages 27-34, 2004.
    • (2004) Proc. ICDM , pp. 27-34
    • Böhm, C.1    Kailing, K.2    Kriegel, H.-P.3    Kroger, P.4
  • 11
    • 14544300820 scopus 로고    scopus 로고
    • Computing clusters of correlation connected objects
    • C. Böhm, K. Kailing, P. Kroger, and A. Zimek. Computing clusters of correlation connected objects. In Proc. SIGMOD, pages 455-466, 2004.
    • (2004) Proc. SIGMOD , pp. 455-466
    • Böhm, C.1    Kailing, K.2    Kroger, P.3    Zimek, A.4
  • 12
    • 33745466049 scopus 로고    scopus 로고
    • An interactive 3d integration of parallel coordinates and star glyphs
    • IEEE
    • E. Fanea, S. Carpendale, and T. Isenberg. An interactive 3d integration of parallel coordinates and star glyphs. In Proc. INFOVIS, pages 149-156. IEEE, 2005.
    • (2005) Proc. INFOVIS , pp. 149-156
    • Fanea, E.1    Carpendale, S.2    Isenberg, T.3
  • 13
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21:768-769, 1965.
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 15
    • 16244379742 scopus 로고    scopus 로고
    • Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
    • D. Guo. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2(4):232-246, 2003.
    • (2003) Information Visualization , vol.2 , Issue.4 , pp. 232-246
    • Guo, D.1
  • 16
    • 0015680481 scopus 로고
    • Textural features for image classification
    • R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE TSAP, 3(6):610-623, 1973.
    • (1973) IEEE TSAP , vol.3 , Issue.6 , pp. 610-623
    • Haralick, R.M.1    Shanmugam, K.2    Dinstein, I.3
  • 19
    • 0025568642 scopus 로고
    • Parallel coordinates: A tool for visualizing multi-dimensional geometry
    • A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In Proc. VIS, pages 361-378, 1990.
    • (1990) Proc. VIS , pp. 361-378
    • Inselberg, A.1    Dimsdale, B.2
  • 20
    • 33745448226 scopus 로고    scopus 로고
    • Revealing structure in visualizations of dense 2d and 3d parallel coordinates
    • J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure in visualizations of dense 2d and 3d parallel coordinates. Information Visualization, 5(2):125-136, 2006.
    • (2006) Information Visualization , vol.5 , Issue.2 , pp. 125-136
    • Johansson, J.1    Ljung, P.2    Jern, M.3    Cooper, M.4
  • 21
    • 84864188417 scopus 로고    scopus 로고
    • HiCS: High contrast subspaces for density-based outlier ranking
    • F. Keller, E. Müller, and K. Böhm. HiCS: high contrast subspaces for density-based outlier ranking. In Proc. ICDE, 2012.
    • (2012) Proc. ICDE
    • Keller, F.1    Müller, E.2    Böhm, K.3
  • 22
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In Proc. PAKDD, pages 831-838, 2009.
    • (2009) Proc. PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Kroger, P.2    Schubert, E.3    Zimek, A.4
  • 23
    • 84874057277 scopus 로고    scopus 로고
    • Outlier detection in arbitrarily oriented subspaces
    • H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek. Outlier detection in arbitrarily oriented subspaces. In Proc. ICDM, pages 379-388, 2012.
    • (2012) Proc. ICDM , pp. 379-388
    • Kriegel, H.-P.1    Kroger, P.2    Schubert, E.3    Zimek, A.4
  • 24
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1): 1-58, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kroger, P.2    Zimek, A.3
  • 26
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In Proc. SIGMOD, pages 427-438, 2000.
    • (2000) Proc. SIGMOD , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 28
    • 79952902092 scopus 로고    scopus 로고
    • Automated analytical methods to support visual exploration of high-dimensional data
    • A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, and D. Keim. Automated analytical methods to support visual exploration of high-dimensional data. IEEE TVCG, 17(5):584-597, 2011.
    • (2011) IEEE TVCG , vol.17 , Issue.5 , pp. 584-597
    • Tatu, A.1    Albuquerque, G.2    Eisemann, M.3    Bak, P.4    Theisel, H.5    Magnor, M.6    Keim, D.7
  • 29
    • 84872923174 scopus 로고    scopus 로고
    • Subspace search and visualization to make sense of alternative clusterings in high-dimensional data
    • A. Tatu, F. Maaß, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. A. Keim. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. In Proc. VAST, pages 63-72, 2012.
    • (2012) Proc. VAST , pp. 63-72
    • Tatu, A.1    Maaß, F.2    Färber, I.3    Bertini, E.4    Schreck, T.5    Seidl, T.6    Keim, D.A.7
  • 30
    • 0031332549 scopus 로고    scopus 로고
    • Visualizing the behaviour of higher dimensional dynamical systems
    • IEEE
    • R. Wegenkittl, H. Löffelmann, and E. Gröller. Visualizing the behaviour of higher dimensional dynamical systems. In Proc. VIS, pages 119-125. IEEE, 1997.
    • (1997) Proc. VIS , pp. 119-125
    • Wegenkittl, R.1    Löffelmann, H.2    Gröller, E.3
  • 31
    • 2542441481 scopus 로고    scopus 로고
    • Visual hierarchical dimension reduction for exploration of high dimensional datasets
    • J. Yang, M. Ward, E. Rundensteiner, and S. Huang. Visual hierarchical dimension reduction for exploration of high dimensional datasets. In Proc. Symp. Data Visualisation 2003, pages 19-28, 2003.
    • (2003) Proc. Symp. Data Visualisation 2003 , pp. 19-28
    • Yang, J.1    Ward, M.2    Rundensteiner, E.3    Huang, S.4
  • 32
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • A. Zimek, E. Schubert, and H.-P. Kriegel. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min., 5(5):363-387, 2012.
    • (2012) Stat. Anal. Data Min. , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.