메뉴 건너뛰기




Volumn , Issue , 2008, Pages 153-158

Comparison of four performance metrics for evaluating sampling techniques for low quality class-imbalanced data

Author keywords

Class imbalance; Data quality; Data sampling; Performance metrics; Simulated noise

Indexed keywords

CLASS IMBALANCE; DATA QUALITY; DATA SAMPLING; PERFORMANCE METRICS; SIMULATED NOISE;

EID: 60649086930     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2008.11     Document Type: Conference Paper
Times cited : (11)

References (19)
  • 1
    • 34547973397 scopus 로고    scopus 로고
    • The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04)
    • R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri. The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04), Lecture Notes in Computer Science 3138, (806-814), 2004.
    • (2004) Lecture Notes in Computer Science , vol.3138 , Issue.806-814
    • Barandela, R.1    Valdovinos, R.M.2    Sanchez, J.S.3    Ferri, F.J.4
  • 4
    • 85126492663 scopus 로고    scopus 로고
    • H. Han, W. Y. Wang, and B. H. Mao. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
    • H. Han, W. Y. Wang, and B. H. Mao. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
  • 5
    • 24144464528 scopus 로고    scopus 로고
    • Good practice in retail credit scorecard assessment
    • D. J. Hand. Good practice in retail credit scorecard assessment. Journal of the Operational Research Society, 56:1109-1117, 2005.
    • (2005) Journal of the Operational Research Society , vol.56 , pp. 1109-1117
    • Hand, D.J.1
  • 6
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo and N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations, 6 (1):40-49, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 9
    • 36348988873 scopus 로고    scopus 로고
    • Foundations of statistical natural language processing
    • MA
    • C. Manning and H. Schutze. Foundations of statistical natural language processing. MIT Press, Cambirdge, MA, 1999.
    • (1999) MIT Press, Cambirdge
    • Manning, C.1    Schutze, H.2
  • 10
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 12
    • 33644969450 scopus 로고    scopus 로고
    • Detecting noisy instances with the ensemble filter: A study in software quality estimation
    • T. M. Khoshgoftaar, V. Joshi, and N. Seliya. Detecting noisy instances with the ensemble filter: a study in software quality estimation. Intl. Journal of Software Engineering, 16 (1): 124, 2006.
    • (2006) Intl. Journal of Software Engineering , vol.16 , Issue.1 , pp. 124
    • Khoshgoftaar, T.M.1    Joshi, V.2    Seliya, N.3
  • 13
    • 51949098422 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, Florida, USA, May, Advised by T. M. Khoshgoftaar
    • J. Van Hulse. Data quality in data mining and machine learning. Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, Florida, USA, May 2007. Advised by T. M. Khoshgoftaar.
    • (2007) Data quality in data mining and machine learning
    • Van Hulse, J.1
  • 16
    • 0002128687 scopus 로고
    • Learning with rare cases and small disjuncts
    • Morgan Kaufmann
    • G. Weiss. Learning with rare cases and small disjuncts. In 12th International Conference on Machine Learning, pages 558-565. Morgan Kaufmann, 1995.
    • (1995) 12th International Conference on Machine Learning , pp. 558-565
    • Weiss, G.1
  • 17
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data sets
    • D.Wilson. Asymptotic properties of nearest neighbor rules using edited data sets. IEEE Trans. on Systems, Man and Cybernetics, (2):408-421, 1972.
    • (1972) IEEE Trans. on Systems, Man and Cybernetics , vol.2 , pp. 408-421
    • Wilson, D.1
  • 19
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • November
    • X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22 (3-4): 177-210, November 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.