-
3
-
-
0003797958
-
-
San Diego, CA, USA Academic Press Mathematics in Science and Engineering MR1658022 ZBL1056.93542
-
Podlubny I., Fractional differential equations 1999 198 San Diego, CA, USA Academic Press Mathematics in Science and Engineering MR1658022 ZBL1056.93542
-
(1999)
Fractional Differential Equations
, vol.198
-
-
Podlubny, I.1
-
5
-
-
79251611305
-
A generalized exp-function method for fractional riccati differential equations
-
Zhang S., Zong Q.-A., Liu D., Gao Q., A generalized exp-function method for fractional riccati differential equations. Communications in Fractional Calculus 2010 1 1 48 51
-
(2010)
Communications in Fractional Calculus
, vol.1
, Issue.1
, pp. 48-51
-
-
Zhang, S.1
Zong, Q.-A.2
Liu, D.3
Gao, Q.4
-
6
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
10.1016/j.physleta.2011.01.029 MR2765013 ZBL1242.35217
-
Zhang S., Zhang H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs. Physics Letters A 2011 375 7 1069 1073 10.1016/j.physleta.2011.01.029 MR2765013 ZBL1242.35217
-
(2011)
Physics Letters A
, vol.375
, Issue.7
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.-Q.2
-
7
-
-
84864671185
-
A generalized fractional sub-equation method for fractional differential equations with variable coefficients
-
10.1016/j.physleta.2012.07.018 MR2961121
-
Tang B., He Y., Wei L., Zhang X., A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Physics Letters A 2012 376 38-39 2588 2590 10.1016/j.physleta.2012.07.018 MR2961121
-
(2012)
Physics Letters A
, vol.376
, Issue.38-39
, pp. 2588-2590
-
-
Tang, B.1
He, Y.2
Wei, L.3
Zhang, X.4
-
8
-
-
84855193408
-
The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics
-
10.1016/j.physleta.2011.10.056 MR2877750 ZBL1255.37022
-
Guo S., Mei L., Li Y., Sun Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Physics Letters A 2012 376 4 407 411 10.1016/j.physleta. 2011.10.056 MR2877750 ZBL1255.37022
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 407-411
-
-
Guo, S.1
Mei, L.2
Li, Y.3
Sun, Y.4
-
9
-
-
84870265361
-
(G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
-
Zheng B., (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Communications in Theoretical Physics 2012 58 5 623 630
-
(2012)
Communications in Theoretical Physics
, vol.58
, Issue.5
, pp. 623-630
-
-
Zheng, B.1
-
10
-
-
84869126980
-
Exact solutions for nonlinear partial fractional differential equations
-
110204
-
Gepreel K. A., Omran S., Exact solutions for nonlinear partial fractional differential equations. Chinese Physics B 2012 21 11 110204
-
(2012)
Chinese Physics B
, vol.21
, Issue.11
-
-
Gepreel, K.A.1
Omran, S.2
-
11
-
-
84864025292
-
The first integral method for some time fractional differential equations
-
10.1016/j.jmaa.2012.05.066 MR2948259 ZBL1246.35202
-
Lu B., The first integral method for some time fractional differential equations. Journal of Mathematical Analysis and Applications 2012 395 2 684 693 10.1016/j.jmaa.2012.05.066 MR2948259 ZBL1246.35202
-
(2012)
Journal of Mathematical Analysis and Applications
, vol.395
, Issue.2
, pp. 684-693
-
-
Lu, B.1
-
12
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
10.1016/j.physleta.2011.11.030 MR2877722 ZBL1255.26002
-
He J.-H., Elagan S. K., Li Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A 2012 376 4 257 259 10.1016/j.physleta.2011.11.030 MR2877722 ZBL1255.26002
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.B.3
-
13
-
-
84873373013
-
Fractional complex transforms for fractional differential equations
-
article 192
-
Ibrahim R. W., Fractional complex transforms for fractional differential equations. Advances in Difference Equations 2012 2012 article 192
-
(2012)
Advances in Difference Equations
, vol.2012
-
-
Ibrahim, R.W.1
-
14
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
DOI 10.1016/j.chaos.2006.03.020, PII S0960077906002293
-
He J.-H., Wu X.-H., Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 2006 30 3 700 708 10.1016/j.chaos.2006.03.020 MR2238695 ZBL1141.35448 (Pubitemid 43903182)
-
(2006)
Chaos, Solitons and Fractals
, vol.30
, Issue.3
, pp. 700-708
-
-
He, J.-H.1
Wu, X.-H.2
-
15
-
-
41849090442
-
Application of Exp-function method to high-dimensional nonlinear evolution equation
-
DOI 10.1016/j.chaos.2006.11.014, PII S0960077906010502
-
Zhang S., Application of Exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons and Fractals 2008 38 1 270 276 10.1016/j.chaos.2006.11.014 MR2417662 ZBL1142.35593 (Pubitemid 351503992)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.1
, pp. 270-276
-
-
Zhang, S.1
-
16
-
-
77955772832
-
New solitons and periodic solutions for nonlinear physical models in mathematical physics
-
10.1016/j.nonrwa.2009.10.015 MR2661988 ZBL1196.35178
-
Bekir A., Cevikel A. C., New solitons and periodic solutions for nonlinear physical models in mathematical physics. Nonlinear Analysis. Real World Applications 2010 11 4 3275 3285 10.1016/j.nonrwa.2009.10.015 MR2661988 ZBL1196.35178
-
(2010)
Nonlinear Analysis. Real World Applications
, vol.11
, Issue.4
, pp. 3275-3285
-
-
Bekir, A.1
Cevikel, A.C.2
-
17
-
-
34548246435
-
Application of Exp-function method for nonlinear evolution equations with variable coefficients
-
2-s2.0-34548246435 10.1016/j.physleta.2007.04.075
-
El-Wakil S. A., Madkour M. A., Abdou M. A., Application of Exp-function method for nonlinear evolution equations with variable coefficients. Physics Letters A 2007 369 1-2 62 69 2-s2.0-34548246435 10.1016/j.physleta.2007.04.075
-
(2007)
Physics Letters A
, vol.369
, Issue.1-2
, pp. 62-69
-
-
El-Wakil, S.A.1
Madkour, M.A.2
Abdou, M.A.3
-
19
-
-
73449133326
-
Application of the exp-function method for nonlinear differential- difference equations
-
10.1016/j.amc.2009.12.003 MR2578871 ZBL1185.35312
-
Bekir A., Application of the exp-function method for nonlinear differential-difference equations. Applied Mathematics and Computation 2010 215 11 4049 4053 10.1016/j.amc.2009.12.003 MR2578871 ZBL1185.35312
-
(2010)
Applied Mathematics and Computation
, vol.215
, Issue.11
, pp. 4049-4053
-
-
Bekir, A.1
-
20
-
-
67650999162
-
New analytic solutions of stochastic coupled KdV equations
-
10.1016/j.chaos.2009.03.157 MR2559882 ZBL1198.35292
-
Dai C. Q., Chen J. L., New analytic solutions of stochastic coupled KdV equations. Chaos, Solitons & Fractals 2009 42 4 2200 2207 10.1016/j.chaos.2009.03.157 MR2559882 ZBL1198.35292
-
(2009)
Chaos, Solitons & Fractals
, vol.42
, Issue.4
, pp. 2200-2207
-
-
Dai, C.Q.1
Chen, J.L.2
-
21
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent II
-
Caputo M., Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal International 1967 13 5 529 539
-
(1967)
Geophysical Journal International
, vol.13
, Issue.5
, pp. 529-539
-
-
Caputo, M.1
-
23
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
10.1016/j.camwa.2006.02.001 MR2237634 ZBL1137.65001
-
Jumarie G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications 2006 51 9-10 1367 1376 10.1016/j.camwa.2006.02.001 MR2237634 ZBL1137.65001
-
(2006)
Computers & Mathematics with Applications
, vol.51
, Issue.9-10
, pp. 1367-1376
-
-
Jumarie, G.1
-
24
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions
-
10.1016/j.aml.2008.06.003 MR2483503 ZBL1171.26305
-
Jumarie G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Applied Mathematics Letters 2009 22 3 378 385 10.1016/j.aml.2008.06.003 MR2483503 ZBL1171.26305
-
(2009)
Applied Mathematics Letters
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
25
-
-
79955470495
-
Fractional complex transform for fractional differential equations
-
MR2777702 ZBL1215.35164
-
Li Z.-B., He J.-H., Fractional complex transform for fractional differential equations. Mathematical & Computational Applications 2010 15 5 970 973 MR2777702 ZBL1215.35164
-
(2010)
Mathematical & Computational Applications
, vol.15
, Issue.5
, pp. 970-973
-
-
Li, Z.-B.1
He, J.-H.2
-
26
-
-
80051828842
-
Application of the fractional complex transform to fractional differential equations
-
Li Z.-B., He J.-H., Application of the fractional complex transform to fractional differential equations. Nonlinear Science Letters A 2011 2 121 126
-
(2011)
Nonlinear Science Letters A
, vol.2
, pp. 121-126
-
-
Li, Z.-B.1
He, J.-H.2
-
27
-
-
34250163508
-
New periodic solutions for nonlinear evolution equations using Exp-function method
-
DOI 10.1016/j.chaos.2006.05.072, PII S0960077906005418
-
He J.-H., Abdou M. A., New periodic solutions for nonlinear evolution equations using exp-function method. Chaos, Solitons & Fractals 2007 34 5 1421 1429 10.1016/j.chaos.2006.05.072 MR2335393 ZBL1152.35441 (Pubitemid 46907583)
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, Issue.5
, pp. 1421-1429
-
-
He, J.-H.1
Abdou, M.A.2
-
28
-
-
34147152832
-
Exact solitary wave solutions for some nonlinear evolution equations via exp-function method
-
10.1016/j.physleta.2007.01.009 MR2308767 ZBL1203.35213
-
Ebaid A., Exact solitary wave solutions for some nonlinear evolution equations via exp-function method. Physics Letters A 2007 365 3 213 219 10.1016/j.physleta.2007.01.009 MR2308767 ZBL1203.35213
-
(2007)
Physics Letters A
, vol.365
, Issue.3
, pp. 213-219
-
-
Ebaid, A.1
-
30
-
-
73849139817
-
Exact solutions of fractional-order biological population model
-
10.1088/0253-6102/52/6/04 MR2683018 ZBL1184.92038
-
El-Sayed A. M. A., Rida S. Z., Arafa A. A. M., Exact solutions of fractional-order biological population model. Communications in Theoretical Physics 2009 52 6 992 996 10.1088/0253-6102/52/6/04 MR2683018 ZBL1184.92038
-
(2009)
Communications in Theoretical Physics
, vol.52
, Issue.6
, pp. 992-996
-
-
El-Sayed, A.M.A.1
Rida, S.Z.2
Arafa, A.A.M.3
-
31
-
-
84861576550
-
Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations
-
10.1016/j.physleta.2012.05.013 MR2929392
-
Lu B., Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Physics Letters A 2012 376 28-29 2045 2048 10.1016/j.physleta.2012.05.013 MR2929392
-
(2012)
Physics Letters A
, vol.376
, Issue.28-29
, pp. 2045-2048
-
-
Lu, B.1
-
32
-
-
43949121726
-
The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
-
10.1016/j.jmaa.2008.04.007 MR2422665 ZBL1146.35304
-
Inc M., The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. Journal of Mathematical Analysis and Applications 2008 345 1 476 484 10.1016/j.jmaa.2008.04.007 MR2422665 ZBL1146.35304
-
(2008)
Journal of Mathematical Analysis and Applications
, vol.345
, Issue.1
, pp. 476-484
-
-
Inc, M.1
-
33
-
-
84874533666
-
Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations
-
587179
-
Jafari H., Tajadodi H., Kadkhoda N., Baleanu D., Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations. Abstract and Applied Analysis 2013 2013 5 587179
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 5
-
-
Jafari, H.1
Tajadodi, H.2
Kadkhoda, N.3
Baleanu, D.4
-
34
-
-
5144229861
-
A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient
-
10.1016/j.apnum.2004.02.006 MR2091400 ZBL1112.65078
-
Choo S. M., Chung S. K., Lee Y. J., A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient. Applied Numerical Mathematics 2004 51 2-3 207 219 10.1016/j.apnum.2004.02.006 MR2091400 ZBL1112.65078
-
(2004)
Applied Numerical Mathematics
, vol.51
, Issue.2-3
, pp. 207-219
-
-
Choo, S.M.1
Chung, S.K.2
Lee, Y.J.3
-
35
-
-
34249662156
-
A numerical method for the Cahn-Hilliard equation with a variable mobility
-
DOI 10.1016/j.cnsns.2006.02.010, PII S1007570406000670
-
Kim J., A numerical method for the Cahn-Hilliard equation with a variable mobility. Communications in Nonlinear Science and Numerical Simulation 2007 12 8 1560 1571 10.1016/j.cnsns.2006.02.010 MR2332646 ZBL1118.35049 (Pubitemid 46838592)
-
(2007)
Communications in Nonlinear Science and Numerical Simulation
, vol.12
, Issue.8
, pp. 1560-1571
-
-
Kim, J.1
|