메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Fractional complex transforms for fractional differential equations

Author keywords

analytic function; Cauchy differential equation; Fox Wright function; fractional calculus; fractional complex transform; fractional differential equations; Srivastava Owa fractional operators; unit disk

Indexed keywords


EID: 84873373013     PISSN: 16871839     EISSN: 16871847     Source Type: Journal    
DOI: 10.1186/1687-1847-2012-192     Document Type: Article
Times cited : (51)

References (37)
  • 1
    • 78650612236 scopus 로고    scopus 로고
    • Radius estimates of a subclass of univalent functions
    • 2746329 06117047
    • Darus M, Ibrahim RW: Radius estimates of a subclass of univalent functions. Math. Vesnik 2011, 63:55-58.
    • (2011) Math. Vesnik , vol.63 , pp. 55-58
    • Darus, M.1    Ibrahim, R.W.2
  • 2
    • 4644287436 scopus 로고    scopus 로고
    • Some subordination results associated with certain subclasses of analytic functions
    • Srivastava HM, Ling Y, Bao G: Some distortion inequalities associated with the fractional derivatives of analytic and univalent functions. JIPAM. J. Inequal. Pure Appl. Math. 2001, 2:1-6. (Pubitemid 39301049)
    • (2004) Journal of Inequalities in Pure and Applied Mathematics , vol.5 , Issue.4 , pp. 1-6
    • Srivastava, H.M.1    Attiya, A.A.2
  • 4
    • 0003797958 scopus 로고    scopus 로고
    • Academic Press, San Diego [Mathematics in Science and Engineering 198]
    • Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. [Mathematics in Science and Engineering 198]
    • (1999) Fractional Differential Equations
    • Podlubny, I.1
  • 11
    • 84861948996 scopus 로고    scopus 로고
    • On set of nonlinearity in thermostatted active particles models for complex systems
    • 2927209 10.1016/j.nonrwa.2012.03.005
    • Bianca C: On set of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal., Real World Appl. 2012, 13:2593-2608.
    • (2012) Nonlinear Anal., Real World Appl , vol.13 , pp. 2593-2608
    • Bianca, C.1
  • 12
    • 80053435477 scopus 로고    scopus 로고
    • Modified projective Lag synchronization of two nonidentical hyperchaotic complex nonlinear systems
    • Mahmoud G, Mahmoud E: Modified projective Lag synchronization of two nonidentical hyperchaotic complex nonlinear systems. Int. J. Bifurc. Chaos 2011,2(8):2369-2379.
    • (2011) Int. J. Bifurc. Chaos , vol.2 , Issue.8 , pp. 2369-2379
    • Mahmoud, G.1    Mahmoud, E.2
  • 13
    • 70450280831 scopus 로고    scopus 로고
    • On the hyperchaotic complex Lü system
    • 2563618 1183.70053 10.1007/s11071-009-9513-0
    • Mahmoud G, Mahmoud E, Ahmed M: On the hyperchaotic complex Lü system. Nonlinear Dyn. 2009, 58:725-738.
    • (2009) Nonlinear Dyn , vol.58 , pp. 725-738
    • Mahmoud, G.1    Mahmoud, E.2    Ahmed, M.3
  • 14
    • 0000072204 scopus 로고
    • The complex Lorenz equations
    • 653770 1194.37039 10.1016/0167-2789(82)90057-4
    • Fowler AC, Gibbon JD, McGuinness MJ: The complex Lorenz equations. Physica D 1982, 4:139-163.
    • (1982) Physica D , vol.4 , pp. 139-163
    • Fowler, A.C.1    Gibbon, J.D.2    McGuinness, M.J.3
  • 15
    • 0345573180 scopus 로고    scopus 로고
    • Global stability properties of the complex Lorenz model
    • PII S0167278996001297
    • Rauth A, Hannibal L, Abraham NB: Global stability properties of the complex Lorenz model. Physica D 1996, 99:45-58. (Pubitemid 126687486)
    • (1996) Physica D: Nonlinear Phenomena , vol.99 , Issue.1 , pp. 45-58
    • Rauh, A.1    Hannibal, L.2    Abraham, N.B.3
  • 16
    • 36449002999 scopus 로고
    • Contraction of a complex-valued fractional Brownian of order n
    • 1180424 0762.60073 10.1063/1.529976
    • Sainty P: Contraction of a complex-valued fractional Brownian of order n. J. Math. Phys. 1992,33(9):3128-3149.
    • (1992) J. Math. Phys , vol.33 , Issue.9 , pp. 3128-3149
    • Sainty, P.1
  • 17
    • 0033893252 scopus 로고    scopus 로고
    • Fractional Brownian motion with complex variance via random walk in the complex plane and applications
    • DOI 10.1016/S0960-0779(99)00015-6
    • Jumarie G: Fractional Brownian motion with complex variance via random walk in the complex plane and applications. Chaos Solitons Fractals 2000, 11:1097-1111. (Pubitemid 30555663)
    • (2000) Chaos, solitons and fractals , vol.11 , Issue.7 , pp. 1097-1111
    • Jumarie, G.1
  • 18
    • 0035924742 scopus 로고    scopus 로고
    • Schrodinger equation for quantum fractal space-time of order n via the complex-valued fractional Brownian motion
    • 1875393 1039.81008 10.1142/S0217751X01005468
    • Jumarie G: Schrodinger equation for quantum fractal space-time of order n via the complex-valued fractional Brownian motion. Int. J. Mod. Phys. A 2001, 16:5061-5084.
    • (2001) Int. J. Mod. Phys. A , vol.16 , pp. 5061-5084
    • Jumarie, G.1
  • 19
    • 2442500782 scopus 로고    scopus 로고
    • Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results
    • 2076021 1068.60053 10.1016/j.chaos.2004.03.020
    • Jumarie G: Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results. Chaos Solitons Fractals 2004, 22:907-925.
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 907-925
    • Jumarie, G.1
  • 20
    • 29144520230 scopus 로고    scopus 로고
    • Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics
    • DOI 10.1016/j.chaos.2005.08.083, PII S0960077905006132
    • Jumarie G: Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics. Chaos Solitons Fractals 2006, 28:1285-1305. (Pubitemid 41815098)
    • (2006) Chaos, Solitons and Fractals , vol.28 , Issue.5 , pp. 1285-1305
    • Jumarie, G.1
  • 22
    • 42449096849 scopus 로고    scopus 로고
    • On exact solutions of a class of fractional Euler-lagrange equations
    • DOI 10.1007/s11071-007-9281-7
    • Baleanu D, Trujillo JJ: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 2008, 52:331-335. (Pubitemid 351572392)
    • (2008) Nonlinear Dynamics , vol.52 , Issue.4 , pp. 331-335
    • Baleanu, D.1    Trujillo, J.J.2
  • 24
    • 44649165019 scopus 로고    scopus 로고
    • Subordination and superordination for univalent solutions for fractional differential equations
    • 2429186 1147.30009 10.1016/j.jmaa.2008.05.017
    • Ibrahim RW, Darus M: Subordination and superordination for univalent solutions for fractional differential equations. J. Math. Anal. Appl. 2008, 345:871-879.
    • (2008) J. Math. Anal. Appl , vol.345 , pp. 871-879
    • Ibrahim, R.W.1    Darus, M.2
  • 25
    • 78649717374 scopus 로고    scopus 로고
    • On solutions for fractional diffusion problems
    • Ibrahim RW: On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147:1-11.
    • (2010) Electron. J. Differ. Equ , vol.147 , pp. 1-11
    • Ibrahim, R.W.1
  • 26
    • 79953706558 scopus 로고    scopus 로고
    • Existence and uniqueness of holomorphic solutions for fractional Cauchy problem
    • 2786198 1214.30027 10.1016/j.jmaa.2011.03.001
    • Ibrahim RW: Existence and uniqueness of holomorphic solutions for fractional Cauchy problem. J. Math. Anal. Appl. 2011, 380:232-240.
    • (2011) J. Math. Anal. Appl , vol.380 , pp. 232-240
    • Ibrahim, R.W.1
  • 27
    • 84856458739 scopus 로고    scopus 로고
    • Ulam stability for fractional differential equation in complex domain
    • 2012 Article ID 649517. doi:10.1155/2012/649517
    • Ibrahim RW: Ulam stability for fractional differential equation in complex domain. Abstr. Appl. Anal. 2012., 2012: Article ID 649517. doi:10.1155/2012/649517
    • (2012) Abstr. Appl. Anal
    • Ibrahim, R.W.1
  • 28
    • 84864913155 scopus 로고    scopus 로고
    • On holomorphic solution for space and time fractional telegraph equations in complex domain
    • 2012 Article ID 703681. doi:10.1155/2012/703681
    • Ibrahim RW: On holomorphic solution for space and time fractional telegraph equations in complex domain. J. Funct. Spaces Appl. 2012., 2012: Article ID 703681. doi:10.1155/2012/703681
    • (2012) J. Funct. Spaces Appl
    • Ibrahim, R.W.1
  • 29
    • 77955576756 scopus 로고    scopus 로고
    • Bücklund transformations for a matrix second Painlev equation
    • 2670834 1238.34155 10.1016/j.physleta.2010.06.034
    • Gordoa PR, Pickering A, Zhu ZN: Bücklund transformations for a matrix second Painlev equation. Phys. Lett. A 2010,374(34):3422-3424.
    • (2010) Phys. Lett. A , vol.374 , Issue.34 , pp. 3422-3424
    • Gordoa, P.R.1    Pickering, A.2    Zhu, Z.N.3
  • 30
    • 84871836938 scopus 로고    scopus 로고
    • Approximate analytic solutions of fractional Zakharov-Kuznetsov equations by fractional complex transform
    • Molliq R, Batiha B: Approximate analytic solutions of fractional Zakharov-Kuznetsov equations by fractional complex transform. Int. J. Eng. Technol. 2012,1(1):1-13.
    • (2012) Int. J. Eng. Technol , vol.1 , Issue.1 , pp. 1-13
    • Molliq, R.1    Batiha, B.2
  • 32
    • 84862304090 scopus 로고    scopus 로고
    • On generalized Srivastava-Owa fractional operators in the unit disk
    • Ibrahim RW: On generalized Srivastava-Owa fractional operators in the unit disk. Adv. Differ. Equ. 2011, 55:1-10.
    • (2011) Adv. Differ. Equ , vol.55 , pp. 1-10
    • Ibrahim, R.W.1
  • 33
    • 79955470495 scopus 로고    scopus 로고
    • Fractional complex transform for fractional differential equations
    • 2777702 1215.35164
    • Li ZB, He JH: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2010, 15:970-973.
    • (2010) Math. Comput. Appl , vol.15 , pp. 970-973
    • Li, Z.B.1    He, J.H.2
  • 34
    • 80051855070 scopus 로고    scopus 로고
    • An extended fractional complex transform
    • Li ZB: An extended fractional complex transform. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11:0335-0337.
    • (2010) Int. J. Nonlinear Sci. Numer. Simul , vol.11 , pp. 0335-0337
    • Li, Z.B.1
  • 35
    • 80051828842 scopus 로고    scopus 로고
    • Application of the fractional complex transform to fractional differential equations
    • 2866993
    • Li ZB, He JH: Application of the fractional complex transform to fractional differential equations. Nonlinear Sci. Lett. A 2011, 2:121-126.
    • (2011) Nonlinear Sci. Lett. A , vol.2 , pp. 121-126
    • Li, Z.B.1    He, J.H.2
  • 36
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • 2877722 10.1016/j.physleta.2011.11.030
    • He J-H, Elagan SK, Li ZB: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376:257-259.
    • (2012) Phys. Lett. A , vol.376 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.