-
1
-
-
78650612236
-
Radius estimates of a subclass of univalent functions
-
2746329 06117047
-
Darus M, Ibrahim RW: Radius estimates of a subclass of univalent functions. Math. Vesnik 2011, 63:55-58.
-
(2011)
Math. Vesnik
, vol.63
, pp. 55-58
-
-
Darus, M.1
Ibrahim, R.W.2
-
2
-
-
4644287436
-
Some subordination results associated with certain subclasses of analytic functions
-
Srivastava HM, Ling Y, Bao G: Some distortion inequalities associated with the fractional derivatives of analytic and univalent functions. JIPAM. J. Inequal. Pure Appl. Math. 2001, 2:1-6. (Pubitemid 39301049)
-
(2004)
Journal of Inequalities in Pure and Applied Mathematics
, vol.5
, Issue.4
, pp. 1-6
-
-
Srivastava, H.M.1
Attiya, A.A.2
-
4
-
-
0003797958
-
-
Academic Press, San Diego [Mathematics in Science and Engineering 198]
-
Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. [Mathematics in Science and Engineering 198]
-
(1999)
Fractional Differential Equations
-
-
Podlubny, I.1
-
11
-
-
84861948996
-
On set of nonlinearity in thermostatted active particles models for complex systems
-
2927209 10.1016/j.nonrwa.2012.03.005
-
Bianca C: On set of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal., Real World Appl. 2012, 13:2593-2608.
-
(2012)
Nonlinear Anal., Real World Appl
, vol.13
, pp. 2593-2608
-
-
Bianca, C.1
-
12
-
-
80053435477
-
Modified projective Lag synchronization of two nonidentical hyperchaotic complex nonlinear systems
-
Mahmoud G, Mahmoud E: Modified projective Lag synchronization of two nonidentical hyperchaotic complex nonlinear systems. Int. J. Bifurc. Chaos 2011,2(8):2369-2379.
-
(2011)
Int. J. Bifurc. Chaos
, vol.2
, Issue.8
, pp. 2369-2379
-
-
Mahmoud, G.1
Mahmoud, E.2
-
13
-
-
70450280831
-
On the hyperchaotic complex Lü system
-
2563618 1183.70053 10.1007/s11071-009-9513-0
-
Mahmoud G, Mahmoud E, Ahmed M: On the hyperchaotic complex Lü system. Nonlinear Dyn. 2009, 58:725-738.
-
(2009)
Nonlinear Dyn
, vol.58
, pp. 725-738
-
-
Mahmoud, G.1
Mahmoud, E.2
Ahmed, M.3
-
14
-
-
0000072204
-
The complex Lorenz equations
-
653770 1194.37039 10.1016/0167-2789(82)90057-4
-
Fowler AC, Gibbon JD, McGuinness MJ: The complex Lorenz equations. Physica D 1982, 4:139-163.
-
(1982)
Physica D
, vol.4
, pp. 139-163
-
-
Fowler, A.C.1
Gibbon, J.D.2
McGuinness, M.J.3
-
15
-
-
0345573180
-
Global stability properties of the complex Lorenz model
-
PII S0167278996001297
-
Rauth A, Hannibal L, Abraham NB: Global stability properties of the complex Lorenz model. Physica D 1996, 99:45-58. (Pubitemid 126687486)
-
(1996)
Physica D: Nonlinear Phenomena
, vol.99
, Issue.1
, pp. 45-58
-
-
Rauh, A.1
Hannibal, L.2
Abraham, N.B.3
-
16
-
-
36449002999
-
Contraction of a complex-valued fractional Brownian of order n
-
1180424 0762.60073 10.1063/1.529976
-
Sainty P: Contraction of a complex-valued fractional Brownian of order n. J. Math. Phys. 1992,33(9):3128-3149.
-
(1992)
J. Math. Phys
, vol.33
, Issue.9
, pp. 3128-3149
-
-
Sainty, P.1
-
17
-
-
0033893252
-
Fractional Brownian motion with complex variance via random walk in the complex plane and applications
-
DOI 10.1016/S0960-0779(99)00015-6
-
Jumarie G: Fractional Brownian motion with complex variance via random walk in the complex plane and applications. Chaos Solitons Fractals 2000, 11:1097-1111. (Pubitemid 30555663)
-
(2000)
Chaos, solitons and fractals
, vol.11
, Issue.7
, pp. 1097-1111
-
-
Jumarie, G.1
-
18
-
-
0035924742
-
Schrodinger equation for quantum fractal space-time of order n via the complex-valued fractional Brownian motion
-
1875393 1039.81008 10.1142/S0217751X01005468
-
Jumarie G: Schrodinger equation for quantum fractal space-time of order n via the complex-valued fractional Brownian motion. Int. J. Mod. Phys. A 2001, 16:5061-5084.
-
(2001)
Int. J. Mod. Phys. A
, vol.16
, pp. 5061-5084
-
-
Jumarie, G.1
-
19
-
-
2442500782
-
Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results
-
2076021 1068.60053 10.1016/j.chaos.2004.03.020
-
Jumarie G: Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results. Chaos Solitons Fractals 2004, 22:907-925.
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 907-925
-
-
Jumarie, G.1
-
20
-
-
29144520230
-
Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics
-
DOI 10.1016/j.chaos.2005.08.083, PII S0960077905006132
-
Jumarie G: Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics. Chaos Solitons Fractals 2006, 28:1285-1305. (Pubitemid 41815098)
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.5
, pp. 1285-1305
-
-
Jumarie, G.1
-
21
-
-
65049084831
-
-
World Scientific Singapore
-
Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore; 2012.
-
(2012)
Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos)
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
22
-
-
42449096849
-
On exact solutions of a class of fractional Euler-lagrange equations
-
DOI 10.1007/s11071-007-9281-7
-
Baleanu D, Trujillo JJ: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 2008, 52:331-335. (Pubitemid 351572392)
-
(2008)
Nonlinear Dynamics
, vol.52
, Issue.4
, pp. 331-335
-
-
Baleanu, D.1
Trujillo, J.J.2
-
23
-
-
59649085150
-
Solving the fractional order Bloch equation
-
10.1002/cmr.a.20129
-
Magin R, Feng X, Baleanu D: Solving the fractional order Bloch equation. Concepts Magn. Reson., Part A 2009, 34A:16-23.
-
(2009)
Concepts Magn. Reson., Part A
, vol.34
, pp. 16-23
-
-
Magin, R.1
Feng, X.2
Baleanu, D.3
-
24
-
-
44649165019
-
Subordination and superordination for univalent solutions for fractional differential equations
-
2429186 1147.30009 10.1016/j.jmaa.2008.05.017
-
Ibrahim RW, Darus M: Subordination and superordination for univalent solutions for fractional differential equations. J. Math. Anal. Appl. 2008, 345:871-879.
-
(2008)
J. Math. Anal. Appl
, vol.345
, pp. 871-879
-
-
Ibrahim, R.W.1
Darus, M.2
-
25
-
-
78649717374
-
On solutions for fractional diffusion problems
-
Ibrahim RW: On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147:1-11.
-
(2010)
Electron. J. Differ. Equ
, vol.147
, pp. 1-11
-
-
Ibrahim, R.W.1
-
26
-
-
79953706558
-
Existence and uniqueness of holomorphic solutions for fractional Cauchy problem
-
2786198 1214.30027 10.1016/j.jmaa.2011.03.001
-
Ibrahim RW: Existence and uniqueness of holomorphic solutions for fractional Cauchy problem. J. Math. Anal. Appl. 2011, 380:232-240.
-
(2011)
J. Math. Anal. Appl
, vol.380
, pp. 232-240
-
-
Ibrahim, R.W.1
-
27
-
-
84856458739
-
Ulam stability for fractional differential equation in complex domain
-
2012 Article ID 649517. doi:10.1155/2012/649517
-
Ibrahim RW: Ulam stability for fractional differential equation in complex domain. Abstr. Appl. Anal. 2012., 2012: Article ID 649517. doi:10.1155/2012/649517
-
(2012)
Abstr. Appl. Anal
-
-
Ibrahim, R.W.1
-
28
-
-
84864913155
-
On holomorphic solution for space and time fractional telegraph equations in complex domain
-
2012 Article ID 703681. doi:10.1155/2012/703681
-
Ibrahim RW: On holomorphic solution for space and time fractional telegraph equations in complex domain. J. Funct. Spaces Appl. 2012., 2012: Article ID 703681. doi:10.1155/2012/703681
-
(2012)
J. Funct. Spaces Appl
-
-
Ibrahim, R.W.1
-
29
-
-
77955576756
-
Bücklund transformations for a matrix second Painlev equation
-
2670834 1238.34155 10.1016/j.physleta.2010.06.034
-
Gordoa PR, Pickering A, Zhu ZN: Bücklund transformations for a matrix second Painlev equation. Phys. Lett. A 2010,374(34):3422-3424.
-
(2010)
Phys. Lett. A
, vol.374
, Issue.34
, pp. 3422-3424
-
-
Gordoa, P.R.1
Pickering, A.2
Zhu, Z.N.3
-
30
-
-
84871836938
-
Approximate analytic solutions of fractional Zakharov-Kuznetsov equations by fractional complex transform
-
Molliq R, Batiha B: Approximate analytic solutions of fractional Zakharov-Kuznetsov equations by fractional complex transform. Int. J. Eng. Technol. 2012,1(1):1-13.
-
(2012)
Int. J. Eng. Technol
, vol.1
, Issue.1
, pp. 1-13
-
-
Molliq, R.1
Batiha, B.2
-
32
-
-
84862304090
-
On generalized Srivastava-Owa fractional operators in the unit disk
-
Ibrahim RW: On generalized Srivastava-Owa fractional operators in the unit disk. Adv. Differ. Equ. 2011, 55:1-10.
-
(2011)
Adv. Differ. Equ
, vol.55
, pp. 1-10
-
-
Ibrahim, R.W.1
-
33
-
-
79955470495
-
Fractional complex transform for fractional differential equations
-
2777702 1215.35164
-
Li ZB, He JH: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2010, 15:970-973.
-
(2010)
Math. Comput. Appl
, vol.15
, pp. 970-973
-
-
Li, Z.B.1
He, J.H.2
-
34
-
-
80051855070
-
An extended fractional complex transform
-
Li ZB: An extended fractional complex transform. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11:0335-0337.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul
, vol.11
, pp. 0335-0337
-
-
Li, Z.B.1
-
35
-
-
80051828842
-
Application of the fractional complex transform to fractional differential equations
-
2866993
-
Li ZB, He JH: Application of the fractional complex transform to fractional differential equations. Nonlinear Sci. Lett. A 2011, 2:121-126.
-
(2011)
Nonlinear Sci. Lett. A
, vol.2
, pp. 121-126
-
-
Li, Z.B.1
He, J.H.2
-
36
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
2877722 10.1016/j.physleta.2011.11.030
-
He J-H, Elagan SK, Li ZB: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376:257-259.
-
(2012)
Phys. Lett. A
, vol.376
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.B.3
|