메뉴 건너뛰기




Volumn , Issue , 2008, Pages 373-380

Outlier detection for transaction databases using association rules

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; ASSOCIATION RULES; ASSOCIATIVE PROCESSING; DATA MINING; DATABASE SYSTEMS; DECISION SUPPORT SYSTEMS; INFORMATION SCIENCE; LAWS AND LEGISLATION; MANAGEMENT INFORMATION SYSTEMS; SEARCH ENGINES; SET THEORY;

EID: 51849123305     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WAIM.2008.58     Document Type: Conference Paper
Times cited : (24)

References (17)
  • 1
    • 51849102449 scopus 로고    scopus 로고
    • Ibm almaden. http://www.almaden.ibm.com/software/disciplines/iis/.
    • Ibm almaden
  • 3
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD Conference, pages 37-46, 2001.
    • (2001) SIGMOD Conference , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 4
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 5
    • 85039571873 scopus 로고    scopus 로고
    • A linear method for deviation detection in large databases
    • A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, pages 164-169, 1996.
    • (1996) KDD , pp. 164-169
    • Arning, A.1    Agrawal, R.2    Raghavan, P.3
  • 7
    • 0035007850 scopus 로고    scopus 로고
    • Mafia: A maximal frequent itemset algorithm for transactional databases
    • D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algorithm for transactional databases. In ICDE, pages 443-452, 2001.
    • (2001) ICDE , pp. 443-452
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 8
    • 11844281602 scopus 로고    scopus 로고
    • A machine learning approach to anomaly detection
    • Technical report, Florida Institute of Technology
    • P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection. Technical report, Florida Institute of Technology, 2003.
    • (2003)
    • Chan, P.K.1    Mahoney, M.V.2    Arshad, M.H.3
  • 9
    • 36849000353 scopus 로고    scopus 로고
    • Detecting anomalous records in categorical datasets
    • K. Das and J. G. Schneider. Detecting anomalous records in categorical datasets. In KDD, pages 220-229, 2007.
    • (2007) KDD , pp. 220-229
    • Das, K.1    Schneider, J.G.2
  • 10
    • 31844443295 scopus 로고    scopus 로고
    • Efficiently using prefix-trees in mining frequent itemsets
    • G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In FIMI, 2003.
    • (2003) FIMI
    • Grahne, G.1    Zhu, J.2
  • 12
    • 4544268676 scopus 로고    scopus 로고
    • Fp-outlier: Frequent pattern based outlier detection
    • Technical report, Harbin Institute of Technology
    • Z. He, X. Xu, and S. Deng. Fp-outlier: Frequent pattern based outlier detection. Technical report, Harbin Institute of Technology, 2002.
    • (2002)
    • He, Z.1    Xu, X.2    Deng, S.3
  • 13
    • 77953496765 scopus 로고    scopus 로고
    • Detecting outliers in categorical record databases based on attribute associations
    • to appear
    • K. Narita and H. Kitagawa. Detecting outliers in categorical record databases based on attribute associations. In APWeb, 2008. (to appear).
    • (2008) APWeb
    • Narita, K.1    Kitagawa, H.2
  • 14
    • 0345359208 scopus 로고    scopus 로고
    • Loci: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection using the local correlation integral. In ICDE, pages 315-2003.
    • ICDE , pp. 315-2003
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.B.3    Faloutsos, C.4
  • 15
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD Conference, pages 427-438, 2000.
    • (2000) SIGMOD Conference , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 17
    • 34548588734 scopus 로고    scopus 로고
    • Example-based robust outlier detection in high dimensional datasets
    • C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust outlier detection in high dimensional datasets. In ICDM, pages 829-832, 2005.
    • (2005) ICDM , pp. 829-832
    • Zhu, C.1    Kitagawa, H.2    Faloutsos, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.