-
1
-
-
51849102449
-
-
Ibm almaden. http://www.almaden.ibm.com/software/disciplines/iis/.
-
Ibm almaden
-
-
-
3
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD Conference, pages 37-46, 2001.
-
(2001)
SIGMOD Conference
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
4
-
-
0002221136
-
Fast algorithms for mining association rules in large databases
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
5
-
-
85039571873
-
A linear method for deviation detection in large databases
-
A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, pages 164-169, 1996.
-
(1996)
KDD
, pp. 164-169
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
6
-
-
0039253819
-
Lof: Identifying density-based local outliers
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based local outliers. In SIGMOD Conference, pages 93-104, 2000.
-
(2000)
SIGMOD Conference
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
7
-
-
0035007850
-
-
Mafia: A maximal frequent itemset algorithm for transactional databases
-
D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algorithm for transactional databases. In ICDE, pages 443-452, 2001.
-
(2001)
ICDE
, pp. 443-452
-
-
Burdick, D.1
Calimlim, M.2
Gehrke, J.3
-
8
-
-
11844281602
-
A machine learning approach to anomaly detection
-
Technical report, Florida Institute of Technology
-
P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection. Technical report, Florida Institute of Technology, 2003.
-
(2003)
-
-
Chan, P.K.1
Mahoney, M.V.2
Arshad, M.H.3
-
9
-
-
36849000353
-
Detecting anomalous records in categorical datasets
-
K. Das and J. G. Schneider. Detecting anomalous records in categorical datasets. In KDD, pages 220-229, 2007.
-
(2007)
KDD
, pp. 220-229
-
-
Das, K.1
Schneider, J.G.2
-
10
-
-
31844443295
-
Efficiently using prefix-trees in mining frequent itemsets
-
G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In FIMI, 2003.
-
(2003)
FIMI
-
-
Grahne, G.1
Zhu, J.2
-
12
-
-
4544268676
-
Fp-outlier: Frequent pattern based outlier detection
-
Technical report, Harbin Institute of Technology
-
Z. He, X. Xu, and S. Deng. Fp-outlier: Frequent pattern based outlier detection. Technical report, Harbin Institute of Technology, 2002.
-
(2002)
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
13
-
-
77953496765
-
Detecting outliers in categorical record databases based on attribute associations
-
to appear
-
K. Narita and H. Kitagawa. Detecting outliers in categorical record databases based on attribute associations. In APWeb, 2008. (to appear).
-
(2008)
APWeb
-
-
Narita, K.1
Kitagawa, H.2
-
14
-
-
0345359208
-
Loci: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection using the local correlation integral. In ICDE, pages 315-2003.
-
ICDE
, pp. 315-2003
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.B.3
Faloutsos, C.4
-
15
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD Conference, pages 427-438, 2000.
-
(2000)
SIGMOD Conference
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
17
-
-
34548588734
-
Example-based robust outlier detection in high dimensional datasets
-
C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust outlier detection in high dimensional datasets. In ICDM, pages 829-832, 2005.
-
(2005)
ICDM
, pp. 829-832
-
-
Zhu, C.1
Kitagawa, H.2
Faloutsos, C.3
|