메뉴 건너뛰기




Volumn 7, Issue , 2013, Pages

Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology

Author keywords

Bayesian statistics; Modular Response Analysis; Network inference; Signaling pathways.

Indexed keywords

EGFR PROTEIN, HUMAN; EPIDERMAL GROWTH FACTOR RECEPTOR;

EID: 84879814248     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-7-57     Document Type: Article
Times cited : (30)

References (71)
  • 1
    • 76349097583 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using boolean network inference methods
    • Hickman GJ, Hodgman TC. Inference of gene regulatory networks using boolean network inference methods. J Bioinform Comput Biol 2009, 7:1013-1029.
    • (2009) J Bioinform Comput Biol , vol.7 , pp. 1013-1029
    • Hickman, G.J.1    Hodgman, T.C.2
  • 2
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein signaling networks derived From multiparameter single-cell data
    • Sachs K, Perez O, Peter D, Lauffenburger D, Nolan G. Causal protein signaling networks derived From multiparameter single-cell data. Science 2005, 308:523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Peter, D.3    Lauffenburger, D.4    Nolan, G.5
  • 3
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee S, Speed TP. Network inference using informative priors. PNAS 2008, 105:14313-14318.
    • (2008) PNAS , vol.105 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 4
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink A. Reverse engineering gene regulatory networks. Nat Biotechnol 2005, 23:554-55.
    • (2005) Nat Biotechnol , vol.23 , pp. 554-55
    • Hartemink, A.1
  • 6
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • di Bernardo D
    • Gardner T. di Bernardo D Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105. di Bernardo D.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.1
  • 7
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005, 21:3131-3137.
    • (2005) Bioinformatics , vol.21 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 8
    • 33746612085 scopus 로고    scopus 로고
    • Unravelling gene networks from noisy under-determined experimental perturbation data
    • de la Fuente A, Makhecha D. Unravelling gene networks from noisy under-determined experimental perturbation data. IEE Proc.-Syst. Biol 2006, 153:256-261.
    • (2006) IEE Proc.-Syst. Biol , vol.153 , pp. 256-261
    • de la Fuente, A.1    Makhecha, D.2
  • 10
    • 0036627676 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses
    • D'Haeseleer P, Liang S, Somogyi R. Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. Biosystems 2002, 66:31-41.
    • (2002) Biosystems , vol.66 , pp. 31-41
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 12
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • Peng L, Zhang C, Perkins EJ, Gong P, Deng Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 2007, 8:S13.
    • (2007) BMC Bioinformatics , vol.8
    • Peng, L.1    Zhang, C.2    Perkins, E.J.3    Gong, P.4    Deng, Y.5
  • 14
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • Westerhoff JB H V Hoek
    • Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E. Westerhoff JB H V Hoek Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. PNAS 2002, 99:12841-12846. Westerhoff JB H V Hoek.
    • (2002) PNAS , vol.99 , pp. 12841-12846
    • Kholodenko, B.N.1    Kiyatkin, A.2    Bruggeman, F.J.3    Sontag, E.4
  • 15
    • 0038094430 scopus 로고    scopus 로고
    • From the top down: towards a predictive biology of signalling networks
    • Stark J, Callard R, Hubank M. From the top down: towards a predictive biology of signalling networks. Trends Biotechnol 2003, 7:290-293.
    • (2003) Trends Biotechnol , vol.7 , pp. 290-293
    • Stark, J.1    Callard, R.2    Hubank, M.3
  • 16
    • 9644284380 scopus 로고    scopus 로고
    • Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy
    • Andrec M, Kholodenko BN, Levy RM, Sontag E. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol 2005, 232:421-427.
    • (2005) J Theor Biol , vol.232 , pp. 421-427
    • Andrec, M.1    Kholodenko, B.N.2    Levy, R.M.3    Sontag, E.4
  • 17
    • 33847355217 scopus 로고    scopus 로고
    • Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate
    • Santos SDM, Verveer PJ, Bastiaens P. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 2007, 9:324-330.
    • (2007) Nat Cell Biol , vol.9 , pp. 324-330
    • Santos, S.D.M.1    Verveer, P.J.2    Bastiaens, P.3
  • 19
    • 0031559933 scopus 로고    scopus 로고
    • Quantification of information transfer via cellular signal transduction pathways
    • Kholodenko BN, Hoek JB, Westerhoff HW, Brown GC. Quantification of information transfer via cellular signal transduction pathways. FEBS Lett 1997, 414:430-434.
    • (1997) FEBS Lett , vol.414 , pp. 430-434
    • Kholodenko, B.N.1    Hoek, J.B.2    Westerhoff, H.W.3    Brown, G.C.4
  • 20
  • 22
    • 71749088202 scopus 로고    scopus 로고
    • Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions
    • Fröhlich H, Sahin O, Arlt D, Bender C, Beis̈barth T. Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinformatics 2009, 10:322.
    • (2009) BMC Bioinformatics , vol.10 , pp. 322
    • Fröhlich, H.1    Sahin, O.2    Arlt, D.3    Bender, C.4    Beis̈barth, T.5
  • 23
    • 67949093073 scopus 로고    scopus 로고
    • Four-dimensional dynamics of MAPK information processing systems
    • Kholodenko BN, Birtwistle MR. Four-dimensional dynamics of MAPK information processing systems. Rev Syst Biol Med 2009, 1:28-44.
    • (2009) Rev Syst Biol Med , vol.1 , pp. 28-44
    • Kholodenko, B.N.1    Birtwistle, M.R.2
  • 24
    • 0032935664 scopus 로고    scopus 로고
    • Mitogenactivated protein kinases: specific messages from ubiquitous messengers
    • Schaeffer HJ, Weber MJ. Mitogenactivated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999, 19:2435-2444.
    • (1999) Mol Cell Biol , vol.19 , pp. 2435-2444
    • Schaeffer, H.J.1    Weber, M.J.2
  • 25
    • 33746889808 scopus 로고    scopus 로고
    • A comprehensive pathway map of epidermal growth factor receptor signaling
    • Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005, 1:10.
    • (2005) Mol Syst Biol , vol.1 , pp. 10
    • Oda, K.1    Matsuoka, Y.2    Funahashi, A.3    Kitano, H.4
  • 26
    • 0034667593 scopus 로고    scopus 로고
    • Meaningful relationships : the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions
    • Kolch W. Meaningful relationships : the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000, 351:289-305.
    • (2000) Biochem J , vol.351 , pp. 289-305
    • Kolch, W.1
  • 28
    • 26944454497 scopus 로고    scopus 로고
    • ROC Graphs: notes and practical considerations for researchers
    • Fawcett T. ROC Graphs: notes and practical considerations for researchers. Patt Recognit Lett 2004, 27:882-891.
    • (2004) Patt Recognit Lett , vol.27 , pp. 882-891
    • Fawcett, T.1
  • 29
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precesion, recall and F-measure, informedness, markedness and correlation
    • Powers DMW. Evaluation: From precesion, recall and F-measure, informedness, markedness and correlation. J Mach Learn Technol 2011, 2:37-63.
    • (2011) J Mach Learn Technol , vol.2 , pp. 37-63
    • Powers, D.M.W.1
  • 30
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 2011, 26:2263-70.
    • (2011) Bioinformatics , vol.26 , pp. 2263-70
    • Schaffter, T.1    Marbach, D.2
  • 32
    • 11144254100 scopus 로고    scopus 로고
    • Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum
    • Anderle M, Roy S, Lin H, Becker C, Joho K. Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinformatics 2004, 18:3575-3582.
    • (2004) Bioinformatics , vol.18 , pp. 3575-3582
    • Anderle, M.1    Roy, S.2    Lin, H.3    Becker, C.4    Joho, K.5
  • 34
    • 64549159728 scopus 로고    scopus 로고
    • MS-specific noise model reveals the potential of iTRAQ in quantitative proteomics
    • Hundertmark C, Fischer R, Reinl T, May S, Klawonn F, Jansch L. MS-specific noise model reveals the potential of iTRAQ in quantitative proteomics. Bioinformatics 2009, 25:1004-1011.
    • (2009) Bioinformatics , vol.25 , pp. 1004-1011
    • Hundertmark, C.1    Fischer, R.2    Reinl, T.3    May, S.4    Klawonn, F.5    Jansch, L.6
  • 35
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: establishing direct cause-effect relationships through graph analysis
    • Pinna A, Soranzo N, Fuente A. From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS One 2010, 5:e12912.
    • (2010) PLoS One , vol.5
    • Pinna, A.1    Soranzo, N.2    Fuente, A.3
  • 36
    • 77958508515 scopus 로고    scopus 로고
    • Petri nets with fuzzy logic (PNFL): Reverse engineering and parametrization
    • Kuffner R, Petri T, Windhager L, Zimmer A. Petri nets with fuzzy logic (PNFL): Reverse engineering and parametrization. PLoS ONE 2010, 5:e12807.
    • (2010) PLoS ONE , vol.5
    • Kuffner, R.1    Petri, T.2    Windhager, L.3    Zimmer, A.4
  • 38
  • 41
    • 70349437076 scopus 로고    scopus 로고
    • P53 and E2f: partners in life and death
    • Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev 2009, 9:738-748.
    • (2009) Nat Rev , vol.9 , pp. 738-748
    • Polager, S.1    Ginsberg, D.2
  • 44
    • 9744256274 scopus 로고    scopus 로고
    • Transcriptional regulation of AKT activation by E2F
    • Chaussepied M, Ginsberg D. Transcriptional regulation of AKT activation by E2F. Mol Cell 2004, 16:831-837.
    • (2004) Mol Cell , vol.16 , pp. 831-837
    • Chaussepied, M.1    Ginsberg, D.2
  • 45
    • 34948820665 scopus 로고    scopus 로고
    • PAC1 is a direct transcription target of E2F-1 in apoptotic signaling
    • Wu J, Jin YJ, Calaf GM, Huang WL, Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene 2007, 26:6526-6535.
    • (2007) Oncogene , vol.26 , pp. 6526-6535
    • Wu, J.1    Jin, Y.J.2    Calaf, G.M.3    Huang, W.L.4    Yin, Y.5
  • 46
    • 0028981277 scopus 로고
    • P53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest
    • Peeper D S
    • Ewen M, Oliver C, Sluss HK, Miller SJ. Peeper D S p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. Genes Dev 1995, 9:204-217. Peeper D S.
    • (1995) Genes Dev , vol.9 , pp. 204-217
    • Ewen, M.1    Oliver, C.2    Sluss, H.K.3    Miller, S.J.4
  • 47
    • 78650487946 scopus 로고    scopus 로고
    • HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer
    • Gijsen M, King P, Perera T, Parker PJ, Harris AL, Larijani B, Kong A. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol 2010, 8:e1000563.
    • (2010) PLoS Biol , vol.8
    • Gijsen, M.1    King, P.2    Perera, T.3    Parker, P.J.4    Harris, A.L.5    Larijani, B.6    Kong, A.7
  • 49
    • 34548071359 scopus 로고    scopus 로고
    • Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network
    • Ritter CA, Perez-Torres RM, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Reas 2007, 13:4909.
    • (2007) Clin Cancer Reas , vol.13 , pp. 4909
    • Ritter, C.A.1    Perez-Torres, R.M.2    Rinehart, C.3    Guix, M.4    Dugger, T.5    Engelman, J.A.6    Arteaga, C.L.7
  • 50
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri M, Berger J. Optimal predictive model selection. Annals Stat 2004, 32:870-897.
    • (2004) Annals Stat , vol.32 , pp. 870-897
    • Barbieri, M.1    Berger, J.2
  • 51
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Yoav B, Yosef H. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995, 57:289-300.
    • (1995) J R Stat Soc B , vol.57 , pp. 289-300
    • Yoav, B.1    Yosef, H.2
  • 52
    • 34250303142 scopus 로고    scopus 로고
    • Least squares model averaging
    • Hansen B. Least squares model averaging. Econometrica 2007, 75:1175-1189.
    • (2007) Econometrica , vol.75 , pp. 1175-1189
    • Hansen, B.1
  • 53
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper D. Assessment and propagation of model uncertainty. J R Stat Soc B 1995, 57:45-97.
    • (1995) J R Stat Soc B , vol.57 , pp. 45-97
    • Draper, D.1
  • 54
    • 1142277415 scopus 로고    scopus 로고
    • Frequentist model average estimators
    • Hjort LH, Claeskens G. Frequentist model average estimators. J Am Stat Assoc 2003, 98:879-899.
    • (2003) J Am Stat Assoc , vol.98 , pp. 879-899
    • Hjort, L.H.1    Claeskens, G.2
  • 55
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc 1997, 92:179-191.
    • (1997) J Am Stat Assoc , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.A.3
  • 56
    • 84893179575 scopus 로고
    • Variable selection via Gibbs sampling
    • George EI, McCulloc RE. Variable selection via Gibbs sampling. J Am Stat Assoc 19903, 88:881-889.
    • (1990) J Am Stat Assoc , vol.88 , pp. 881-889
    • George, E.I.1    McCulloc, R.E.2
  • 57
    • 82955228156 scopus 로고    scopus 로고
    • Variable selection for nonparametric gaussian process priors: models and computational strategies
    • Savitsky T, Vannucci M, Sha N. Variable selection for nonparametric gaussian process priors: models and computational strategies. Stat Sci 2011, 26:130-149.
    • (2011) Stat Sci , vol.26 , pp. 130-149
    • Savitsky, T.1    Vannucci, M.2    Sha, N.3
  • 58
    • 0002123103 scopus 로고    scopus 로고
    • Rounthwaite C Rand Kadie: Dependency networks for inference, collaborative filtering, and data visualization
    • Heckerman D, Chickering DM, Meek C. Rounthwaite C Rand Kadie: Dependency networks for inference, collaborative filtering, and data visualization. J Mach Learn Res 2000, 1:49-75.
    • (2000) J Mach Learn Res , vol.1 , pp. 49-75
    • Heckerman, D.1    Chickering, D.M.2    Meek, C.3
  • 59
    • 4444226267 scopus 로고    scopus 로고
    • Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
    • Sontag E, Kiyatkin A, Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 2004, 20:1877-1886.
    • (2004) Bioinformatics , vol.20 , pp. 1877-1886
    • Sontag, E.1    Kiyatkin, A.2    Kholodenko, B.N.3
  • 60
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and Bayesian strategies
    • Ishwaran H, Rao JS. Spike and slab variable selection: frequentist and Bayesian strategies. Ann Stat 2005, 33:730-773.
    • (2005) Ann Stat , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 61
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions,
    • North-Holland, Amsterdam: Zellner A
    • Zellner A On assessing prior distributions and Bayesian regression analysis with g-prior distributions,. Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. 1986,, 233-233. North-Holland, Amsterdam, Zellner A.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. , pp. 233-233
  • 62
    • 73249114674 scopus 로고    scopus 로고
    • An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data
    • Gupta M, Ibrahim J. An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data. Stat Sin 2009, 19:1641-1663.
    • (2009) Stat Sin , vol.19 , pp. 1641-1663
    • Gupta, M.1    Ibrahim, J.2
  • 63
    • 42349089655 scopus 로고    scopus 로고
    • Clyde MA" Berger JO: Mixtures of g priors for Bayesian variable selection
    • Liang F, Paulo R, Molina G. Clyde MA" Berger JO: Mixtures of g priors for Bayesian variable selection. J Am Stat Assoc 2008, 103:410-423.
    • (2008) J Am Stat Assoc , vol.103 , pp. 410-423
    • Liang, F.1    Paulo, R.2    Molina, G.3
  • 64
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • George E, Foster D. Calibration and empirical Bayes variable selection. Biometrika 2000, 87:731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.1    Foster, D.2
  • 65
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen M, Yu B. Model selection and the principle of minimum description length. J Am Stat Assoc 2001, 96:746-774.
    • (2001) J Am Stat Assoc , vol.96 , pp. 746-774
    • Hansen, M.1    Yu, B.2
  • 66
    • 33750191301 scopus 로고    scopus 로고
    • Generalized Least Squares Estimators
    • Chichester, UK: John Wiley & Sons Ltd
    • Kariya T, Kurata H. Generalized Least Squares Estimators. Generalized Least Squares 2004, Chichester, UK: John Wiley & Sons Ltd.
    • (2004) Generalized Least Squares
    • Kariya, T.1    Kurata, H.2
  • 68
    • 0000857113 scopus 로고    scopus 로고
    • Multivariate Bayesian variable selection and prediction
    • Brown PJ, Vanucci M. Multivariate Bayesian variable selection and prediction. J R Stat Soc B 1998, 60:627-641.
    • (1998) J R Stat Soc B , vol.60 , pp. 627-641
    • Brown, P.J.1    Vanucci, M.2
  • 70
    • 1542637078 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear probit gene selection and classification
    • Zhoua X, Wangc X, Doughertya ER. A Bayesian approach to nonlinear probit gene selection and classification. J Franklin Inst 2004, 341:137-156.
    • (2004) J Franklin Inst , vol.341 , pp. 137-156
    • Zhoua, X.1    Wangc, X.2    Doughertya, E.R.3
  • 71
    • 0036020894 scopus 로고    scopus 로고
    • Bayes model averaging with selection of regressors
    • Brown P, Vannucci M, Fearn T. Bayes model averaging with selection of regressors. J R Stat Soc B 2002, 64:519-536.
    • (2002) J R Stat Soc B , vol.64 , pp. 519-536
    • Brown, P.1    Vannucci, M.2    Fearn, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.