메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

A framework for diagnosing the out-of-control signals in multivariate process using optimized support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

ABNORMAL PATTERNS; MULTIVARIATE CONTROL CHARTS; MULTIVARIATE PROCESS; MULTIVARIATE STATISTICAL PROCESS CONTROL; OUT-OF-CONTROL SIGNALS; SERVICE INDUSTRIES; STATISTICAL QUALITY CONTROL; SUPPORT VECTOR MACHINE CLASSIFICATION;

EID: 84879288064     PISSN: 1024123X     EISSN: 15635147     Source Type: Journal    
DOI: 10.1155/2013/494626     Document Type: Article
Times cited : (16)

References (36)
  • 1
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
    • 2-s2.0-53849102241 10.1016/j.eswa.2007.10.003
    • Yu J., Xi L., A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications 2009 36 1 909 921 2-s2.0-53849102241 10.1016/j.eswa.2007.10.003
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 909-921
    • Yu, J.1    Xi, L.2
  • 2
    • 34547828271 scopus 로고    scopus 로고
    • Multivariate statistical process control charts: An overview
    • 2-s2.0-34547828271 10.1002/qre.829
    • Bersimis S., Psarakis S., Panaretos J., Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International 2007 23 5 517 543 2-s2.0-34547828271 10.1002/qre.829
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.5 , pp. 517-543
    • Bersimis, S.1    Psarakis, S.2    Panaretos, J.3
  • 3
    • 58249092619 scopus 로고    scopus 로고
    • Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble
    • 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
    • Yu J., Xi L., Zhou X., Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble. Engineering Applications of Artificial Intelligence 2009 22 1 141 152 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.1 , pp. 141-152
    • Yu, J.1    Xi, L.2    Zhou, X.3
  • 4
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • 2-s2.0-34047098687 10.1002/qre.796
    • Guh R., On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International 2007 23 3 367 385 2-s2.0-34047098687 10.1002/qre.796
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.3 , pp. 367-385
    • Guh, R.1
  • 6
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sun quality control schemes
    • 10.2307/1270083 MR959530 ZBL0651.62095 2-s2.0-0024062307
    • Crosier R. B., Multivariate generalizations of cumulative sun quality control schemes. Technometrics 1988 30 3 291 303 10.2307/1270083 MR959530 ZBL0651.62095 2-s2.0-0024062307
    • (1988) Technometrics , vol.30 , Issue.3 , pp. 291-303
    • Crosier, R.B.1
  • 7
    • 0242333136 scopus 로고    scopus 로고
    • Improved SPC chart pattern recognition using statistical features
    • 2-s2.0-0242333136 10.1080/0020754021000049844
    • Hassan A., Baksh M. S., Shaharoun A. M., Jamaluddin H., Improved SPC chart pattern recognition using statistical features. International Journal of Production Research 2003 41 7 1587 1603 2-s2.0-0242333136 10.1080/ 0020754021000049844
    • (2003) International Journal of Production Research , vol.41 , Issue.7 , pp. 1587-1603
    • Hassan, A.1    Baksh, M.S.2    Shaharoun, A.M.3    Jamaluddin, H.4
  • 9
    • 77955331694 scopus 로고
    • A multivariate exponentially weighted moving average control chart
    • Lowry C. A., Woodall W. H., Champ C. W., Rigdon S. E., A multivariate exponentially weighted moving average control chart. Technometrics 1992 34 46 53
    • (1992) Technometrics , vol.34 , pp. 46-53
    • Lowry, C.A.1    Woodall, W.H.2    Champ, C.W.3    Rigdon, S.E.4
  • 10
    • 0031700345 scopus 로고    scopus 로고
    • Control chart pattern recognition using a new type of self-organizing neural network
    • 2-s2.0-0031700345 10.1243/0959651981539343
    • Pham D. T., Chan A. B., Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of the Institution of Mechanical Engineers 1998 212 2 115 127 2-s2.0-0031700345 10.1243/ 0959651981539343
    • (1998) Proceedings of the Institution of Mechanical Engineers , vol.212 , Issue.2 , pp. 115-127
    • Pham, D.T.1    Chan, A.B.2
  • 11
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • MR652033 2-s2.0-0020118274
    • Hopfield J. J., Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 1982 79 8 2554 2558 MR652033 2-s2.0-0020118274
    • (1982) Proceedings of the National Academy of Sciences of the United States of America , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 12
    • 33751510941 scopus 로고    scopus 로고
    • An integrated approach for process monitoring using wavelet analysis and competitive neural network
    • 2-s2.0-33751510941 10.1080/00207540500442393
    • Wang C., Kuo W., Qi H., An integrated approach for process monitoring using wavelet analysis and competitive neural network. International Journal of Production Research 2007 45 1 227 244 2-s2.0-33751510941 10.1080/ 00207540500442393
    • (2007) International Journal of Production Research , vol.45 , Issue.1 , pp. 227-244
    • Wang, C.1    Kuo, W.2    Qi, H.3
  • 13
    • 0000974044 scopus 로고
    • Control chart pattern recognition using neural networks
    • Pham D. T., Oztemel E., Control chart pattern recognition using neural networks. Journal of Systems Engineering 1992 2 4 256 262
    • (1992) Journal of Systems Engineering , vol.2 , Issue.4 , pp. 256-262
    • Pham, D.T.1    Oztemel, E.2
  • 14
    • 0028392602 scopus 로고
    • Control chart pattern recognition using learning vector quantization networks
    • 2-s2.0-0028392602
    • Pham D. T., Oztemel E., Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research 1994 32 3 721 729 2-s2.0-0028392602
    • (1994) International Journal of Production Research , vol.32 , Issue.3 , pp. 721-729
    • Pham, D.T.1    Oztemel, E.2
  • 15
    • 0009412095 scopus 로고
    • Tighter process control with neural networks
    • Plummer J., Tighter process control with neural networks. AI Expert 1993 8 49 55
    • (1993) AI Expert , vol.8 , pp. 49-55
    • Plummer, J.1
  • 16
    • 0029341659 scopus 로고
    • Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer
    • 2-s2.0-0029341659
    • Hwarng H. B., Chong C. W., Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer. International Journal of Production Research 1995 33 7 1817 1833 2-s2.0-0029341659
    • (1995) International Journal of Production Research , vol.33 , Issue.7 , pp. 1817-1833
    • Hwarng, H.B.1    Chong, C.W.2
  • 17
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • 2-s2.0-0029196273
    • Cheng C., A multi-layer neural network model for detecting changes in the process mean. Computers and Industrial Engineering 1995 28 1 51 61 2-s2.0-0029196273
    • (1995) Computers and Industrial Engineering , vol.28 , Issue.1 , pp. 51-61
    • Cheng, C.1
  • 18
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line detection and analysis of control chart patterns
    • 2-s2.0-23144467659 10.1016/j.cie.2005.03.002
    • Guh R., A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers and Industrial Engineering 2005 49 1 35 62 2-s2.0-23144467659 10.1016/j.cie.2005.03.002
    • (2005) Computers and Industrial Engineering , vol.49 , Issue.1 , pp. 35-62
    • Guh, R.1
  • 19
    • 71749085820 scopus 로고    scopus 로고
    • A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
    • 2-s2.0-71749085820 10.1016/j.eswa.2009.05.092
    • El-Midany T. T., El-Baz M. A., Abd-Elwahed M. S., A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications 2010 37 2 1035 1042 2-s2.0-71749085820 10.1016/j.eswa.2009.05.092
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1035-1042
    • El-Midany, T.T.1    El-Baz, M.A.2    Abd-Elwahed, M.S.3
  • 20
    • 58249092619 scopus 로고    scopus 로고
    • Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble
    • 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
    • Yu J., Xi L., Zhou X., Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble. Engineering Applications of Artificial Intelligence 2009 22 1 141 152 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.1 , pp. 141-152
    • Yu, J.1    Xi, L.2    Zhou, X.3
  • 21
    • 79956115039 scopus 로고    scopus 로고
    • On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
    • 2-s2.0-79956115039 10.1016/j.neucom.2010.12.020
    • Salehi M., Bahreininejad A., Nakhai I., On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 2011 74 12-13 2083 2095 2-s2.0-79956115039 10.1016/j.neucom.2010.12.020
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2083-2095
    • Salehi, M.1    Bahreininejad, A.2    Nakhai, I.3
  • 22
    • 80054957007 scopus 로고    scopus 로고
    • Data mining model-based control charts for multivariate and autocorrelated processes
    • 2-s2.0-80054957007 10.1016/j.eswa.2011.08.010
    • Kim S. B., Jitpitaklert W., Park S., Hwang S., Data mining model-based control charts for multivariate and autocorrelated processes. Expert Systems with Applications 2012 39 2 2073 2081 2-s2.0-80054957007 10.1016/j.eswa.2011.08. 010
    • (2012) Expert Systems with Applications , vol.39 , Issue.2 , pp. 2073-2081
    • Kim, S.B.1    Jitpitaklert, W.2    Park, S.3    Hwang, S.4
  • 23
    • 79953727523 scopus 로고    scopus 로고
    • Estimating the shift size in the process mean with support vector regression and neural networks
    • 2-s2.0-79953727523 10.1016/j.eswa.2011.02.121
    • Cheng C., Chen P., Huang K., Estimating the shift size in the process mean with support vector regression and neural networks. Expert Systems with Applications 2011 38 8 10624 10630 2-s2.0-79953727523 10.1016/j.eswa.2011.02.121
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 10624-10630
    • Cheng, C.1    Chen, P.2    Huang, K.3
  • 25
    • 34547828271 scopus 로고    scopus 로고
    • Multivariate statistical process control charts: An overview
    • 2-s2.0-34547828271 10.1002/qre.829
    • Bersimis S., Psarakis S., Panaretos J., Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International 2007 23 5 517 543 2-s2.0-34547828271 10.1002/qre.829
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.5 , pp. 517-543
    • Bersimis, S.1    Psarakis, S.2    Panaretos, J.3
  • 27
    • 78049274831 scopus 로고    scopus 로고
    • Patent classification system using a new hybrid genetic algorithm support vector machine
    • 2-s2.0-78049274831 10.1016/j.asoc.2009.11.033
    • Wu C., Ken Y., Huang T., Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing Journal 2010 10 4 1164 1177 2-s2.0-78049274831 10.1016/j.asoc.2009.11.033
    • (2010) Applied Soft Computing Journal , vol.10 , Issue.4 , pp. 1164-1177
    • Wu, C.1    Ken, Y.2    Huang, T.3
  • 28
    • 38649135047 scopus 로고    scopus 로고
    • Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
    • 2-s2.0-38649135047 10.1016/j.eswa.2007.06.029
    • Sugumaran V., Sabareesh G. R., Ramachandran K. I., Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine. Expert Systems with Applications 2008 34 4 3090 3098 2-s2.0-38649135047 10.1016/j.eswa.2007.06.029
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 3090-3098
    • Sugumaran, V.1    Sabareesh, G.R.2    Ramachandran, K.I.3
  • 29
    • 70449627002 scopus 로고    scopus 로고
    • Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity
    • 2-s2.0-70449627002 10.1016/j.ejmech.2009.09.006
    • Pourbasheer E., Riahi S., Ganjali M. R., Norouzi P., Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European Journal of Medicinal Chemistry 2009 44 12 5023 5028 2-s2.0-70449627002 10.1016/j.ejmech.2009.09.006
    • (2009) European Journal of Medicinal Chemistry , vol.44 , Issue.12 , pp. 5023-5028
    • Pourbasheer, E.1    Riahi, S.2    Ganjali, M.R.3    Norouzi, P.4
  • 30
    • 79953288891 scopus 로고    scopus 로고
    • Personalized mode transductive spanning SVM classification tree
    • 2-s2.0-79953288891 10.1016/j.ins.2011.01.008
    • Pang S., Ban T., Kadobayashi Y., Kasabov N., Personalized mode transductive spanning SVM classification tree. Information Sciences 2011 181 11 2071 2085 2-s2.0-79953288891 10.1016/j.ins.2011.01.008
    • (2011) Information Sciences , vol.181 , Issue.11 , pp. 2071-2085
    • Pang, S.1    Ban, T.2    Kadobayashi, Y.3    Kasabov, N.4
  • 31
    • 84868623982 scopus 로고    scopus 로고
    • Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    • Ch S., Anand N., Panigrahi B. K., Mathur S., Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 2013 101 18 23
    • (2013) Neurocomputing , vol.101 , pp. 18-23
    • Ch, S.1    Anand, N.2    Panigrahi, B.K.3    Mathur, S.4
  • 32
    • 77952669532 scopus 로고    scopus 로고
    • Kernel subclass convex hull sample selection method for SVM on face recognition
    • Zhou X., Jiang W., Tian Y., Shi Y., Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010 73 2234 2246
    • (2010) Neurocomputing , vol.73 , pp. 2234-2246
    • Zhou, X.1    Jiang, W.2    Tian, Y.3    Shi, Y.4
  • 33
    • 39449129104 scopus 로고    scopus 로고
    • Performance of KNN and SVM classifiers on full word Arabic articles
    • 2-s2.0-39449129104 10.1016/j.aei.2007.12.001
    • Hmeidi I., Hawashin B., El-Qawasmeh E., Performance of KNN and SVM classifiers on full word Arabic articles. Advanced Engineering Informatics 2008 22 1 106 111 2-s2.0-39449129104 10.1016/j.aei.2007.12.001
    • (2008) Advanced Engineering Informatics , vol.22 , Issue.1 , pp. 106-111
    • Hmeidi, I.1    Hawashin, B.2    El-Qawasmeh, E.3
  • 34
    • 42549090647 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary tuning of SVM parameters
    • 10.1016/j.pnsc.2007.11.012 MR2427110
    • Luo Z., Wang P., Li Y., Zhang W., Tang W., Xiang M., Quantum-inspired evolutionary tuning of SVM parameters. Progress in Natural Science 2008 18 4 475 480 10.1016/j.pnsc.2007.11.012 MR2427110
    • (2008) Progress in Natural Science , vol.18 , Issue.4 , pp. 475-480
    • Luo, Z.1    Wang, P.2    Li, Y.3    Zhang, W.4    Tang, W.5    Xiang, M.6
  • 35
    • 84868623982 scopus 로고    scopus 로고
    • Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    • Ch S., Anand N., Panigrahi B. K., Mathur S., Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 2013 101 18 23
    • (2013) Neurocomputing , vol.101 , pp. 18-23
    • Ch, S.1    Anand, N.2    Panigrahi, B.K.3    Mathur, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.