-
1
-
-
53849102241
-
A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
-
2-s2.0-53849102241 10.1016/j.eswa.2007.10.003
-
Yu J., Xi L., A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications 2009 36 1 909 921 2-s2.0-53849102241 10.1016/j.eswa.2007.10.003
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.1
, pp. 909-921
-
-
Yu, J.1
Xi, L.2
-
2
-
-
34547828271
-
Multivariate statistical process control charts: An overview
-
2-s2.0-34547828271 10.1002/qre.829
-
Bersimis S., Psarakis S., Panaretos J., Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International 2007 23 5 517 543 2-s2.0-34547828271 10.1002/qre.829
-
(2007)
Quality and Reliability Engineering International
, vol.23
, Issue.5
, pp. 517-543
-
-
Bersimis, S.1
Psarakis, S.2
Panaretos, J.3
-
3
-
-
58249092619
-
Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble
-
2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
-
Yu J., Xi L., Zhou X., Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble. Engineering Applications of Artificial Intelligence 2009 22 1 141 152 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
-
(2009)
Engineering Applications of Artificial Intelligence
, vol.22
, Issue.1
, pp. 141-152
-
-
Yu, J.1
Xi, L.2
Zhou, X.3
-
4
-
-
34047098687
-
On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
-
2-s2.0-34047098687 10.1002/qre.796
-
Guh R., On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International 2007 23 3 367 385 2-s2.0-34047098687 10.1002/qre.796
-
(2007)
Quality and Reliability Engineering International
, vol.23
, Issue.3
, pp. 367-385
-
-
Guh, R.1
-
5
-
-
0002508003
-
Multivariate quality control
-
New York, NY, USA Wiley
-
Alt F. B., Kotz S., Johnson N. L., Read C. R., Multivariate quality control. The Encyclopedia of Statistical Sciences 1985 New York, NY, USA Wiley 110 122
-
(1985)
The Encyclopedia of Statistical Sciences
, pp. 110-122
-
-
Alt, F.B.1
Kotz, S.2
Johnson, N.L.3
Read, C.R.4
-
6
-
-
0024062307
-
Multivariate generalizations of cumulative sun quality control schemes
-
10.2307/1270083 MR959530 ZBL0651.62095 2-s2.0-0024062307
-
Crosier R. B., Multivariate generalizations of cumulative sun quality control schemes. Technometrics 1988 30 3 291 303 10.2307/1270083 MR959530 ZBL0651.62095 2-s2.0-0024062307
-
(1988)
Technometrics
, vol.30
, Issue.3
, pp. 291-303
-
-
Crosier, R.B.1
-
7
-
-
0242333136
-
Improved SPC chart pattern recognition using statistical features
-
2-s2.0-0242333136 10.1080/0020754021000049844
-
Hassan A., Baksh M. S., Shaharoun A. M., Jamaluddin H., Improved SPC chart pattern recognition using statistical features. International Journal of Production Research 2003 41 7 1587 1603 2-s2.0-0242333136 10.1080/ 0020754021000049844
-
(2003)
International Journal of Production Research
, vol.41
, Issue.7
, pp. 1587-1603
-
-
Hassan, A.1
Baksh, M.S.2
Shaharoun, A.M.3
Jamaluddin, H.4
-
9
-
-
77955331694
-
A multivariate exponentially weighted moving average control chart
-
Lowry C. A., Woodall W. H., Champ C. W., Rigdon S. E., A multivariate exponentially weighted moving average control chart. Technometrics 1992 34 46 53
-
(1992)
Technometrics
, vol.34
, pp. 46-53
-
-
Lowry, C.A.1
Woodall, W.H.2
Champ, C.W.3
Rigdon, S.E.4
-
10
-
-
0031700345
-
Control chart pattern recognition using a new type of self-organizing neural network
-
2-s2.0-0031700345 10.1243/0959651981539343
-
Pham D. T., Chan A. B., Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of the Institution of Mechanical Engineers 1998 212 2 115 127 2-s2.0-0031700345 10.1243/ 0959651981539343
-
(1998)
Proceedings of the Institution of Mechanical Engineers
, vol.212
, Issue.2
, pp. 115-127
-
-
Pham, D.T.1
Chan, A.B.2
-
11
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
MR652033 2-s2.0-0020118274
-
Hopfield J. J., Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 1982 79 8 2554 2558 MR652033 2-s2.0-0020118274
-
(1982)
Proceedings of the National Academy of Sciences of the United States of America
, vol.79
, Issue.8
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
12
-
-
33751510941
-
An integrated approach for process monitoring using wavelet analysis and competitive neural network
-
2-s2.0-33751510941 10.1080/00207540500442393
-
Wang C., Kuo W., Qi H., An integrated approach for process monitoring using wavelet analysis and competitive neural network. International Journal of Production Research 2007 45 1 227 244 2-s2.0-33751510941 10.1080/ 00207540500442393
-
(2007)
International Journal of Production Research
, vol.45
, Issue.1
, pp. 227-244
-
-
Wang, C.1
Kuo, W.2
Qi, H.3
-
13
-
-
0000974044
-
Control chart pattern recognition using neural networks
-
Pham D. T., Oztemel E., Control chart pattern recognition using neural networks. Journal of Systems Engineering 1992 2 4 256 262
-
(1992)
Journal of Systems Engineering
, vol.2
, Issue.4
, pp. 256-262
-
-
Pham, D.T.1
Oztemel, E.2
-
14
-
-
0028392602
-
Control chart pattern recognition using learning vector quantization networks
-
2-s2.0-0028392602
-
Pham D. T., Oztemel E., Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research 1994 32 3 721 729 2-s2.0-0028392602
-
(1994)
International Journal of Production Research
, vol.32
, Issue.3
, pp. 721-729
-
-
Pham, D.T.1
Oztemel, E.2
-
15
-
-
0009412095
-
Tighter process control with neural networks
-
Plummer J., Tighter process control with neural networks. AI Expert 1993 8 49 55
-
(1993)
AI Expert
, vol.8
, pp. 49-55
-
-
Plummer, J.1
-
16
-
-
0029341659
-
Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer
-
2-s2.0-0029341659
-
Hwarng H. B., Chong C. W., Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer. International Journal of Production Research 1995 33 7 1817 1833 2-s2.0-0029341659
-
(1995)
International Journal of Production Research
, vol.33
, Issue.7
, pp. 1817-1833
-
-
Hwarng, H.B.1
Chong, C.W.2
-
17
-
-
0029196273
-
A multi-layer neural network model for detecting changes in the process mean
-
2-s2.0-0029196273
-
Cheng C., A multi-layer neural network model for detecting changes in the process mean. Computers and Industrial Engineering 1995 28 1 51 61 2-s2.0-0029196273
-
(1995)
Computers and Industrial Engineering
, vol.28
, Issue.1
, pp. 51-61
-
-
Cheng, C.1
-
18
-
-
23144467659
-
A hybrid learning-based model for on-line detection and analysis of control chart patterns
-
2-s2.0-23144467659 10.1016/j.cie.2005.03.002
-
Guh R., A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers and Industrial Engineering 2005 49 1 35 62 2-s2.0-23144467659 10.1016/j.cie.2005.03.002
-
(2005)
Computers and Industrial Engineering
, vol.49
, Issue.1
, pp. 35-62
-
-
Guh, R.1
-
19
-
-
71749085820
-
A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
-
2-s2.0-71749085820 10.1016/j.eswa.2009.05.092
-
El-Midany T. T., El-Baz M. A., Abd-Elwahed M. S., A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications 2010 37 2 1035 1042 2-s2.0-71749085820 10.1016/j.eswa.2009.05.092
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.2
, pp. 1035-1042
-
-
El-Midany, T.T.1
El-Baz, M.A.2
Abd-Elwahed, M.S.3
-
20
-
-
58249092619
-
Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble
-
2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
-
Yu J., Xi L., Zhou X., Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble. Engineering Applications of Artificial Intelligence 2009 22 1 141 152 2-s2.0-58249092619 10.1016/j.engappai.2008.05.009
-
(2009)
Engineering Applications of Artificial Intelligence
, vol.22
, Issue.1
, pp. 141-152
-
-
Yu, J.1
Xi, L.2
Zhou, X.3
-
21
-
-
79956115039
-
On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
-
2-s2.0-79956115039 10.1016/j.neucom.2010.12.020
-
Salehi M., Bahreininejad A., Nakhai I., On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 2011 74 12-13 2083 2095 2-s2.0-79956115039 10.1016/j.neucom.2010.12.020
-
(2011)
Neurocomputing
, vol.74
, Issue.12-13
, pp. 2083-2095
-
-
Salehi, M.1
Bahreininejad, A.2
Nakhai, I.3
-
22
-
-
80054957007
-
Data mining model-based control charts for multivariate and autocorrelated processes
-
2-s2.0-80054957007 10.1016/j.eswa.2011.08.010
-
Kim S. B., Jitpitaklert W., Park S., Hwang S., Data mining model-based control charts for multivariate and autocorrelated processes. Expert Systems with Applications 2012 39 2 2073 2081 2-s2.0-80054957007 10.1016/j.eswa.2011.08. 010
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.2
, pp. 2073-2081
-
-
Kim, S.B.1
Jitpitaklert, W.2
Park, S.3
Hwang, S.4
-
23
-
-
79953727523
-
Estimating the shift size in the process mean with support vector regression and neural networks
-
2-s2.0-79953727523 10.1016/j.eswa.2011.02.121
-
Cheng C., Chen P., Huang K., Estimating the shift size in the process mean with support vector regression and neural networks. Expert Systems with Applications 2011 38 8 10624 10630 2-s2.0-79953727523 10.1016/j.eswa.2011.02.121
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.8
, pp. 10624-10630
-
-
Cheng, C.1
Chen, P.2
Huang, K.3
-
25
-
-
34547828271
-
Multivariate statistical process control charts: An overview
-
2-s2.0-34547828271 10.1002/qre.829
-
Bersimis S., Psarakis S., Panaretos J., Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International 2007 23 5 517 543 2-s2.0-34547828271 10.1002/qre.829
-
(2007)
Quality and Reliability Engineering International
, vol.23
, Issue.5
, pp. 517-543
-
-
Bersimis, S.1
Psarakis, S.2
Panaretos, J.3
-
27
-
-
78049274831
-
Patent classification system using a new hybrid genetic algorithm support vector machine
-
2-s2.0-78049274831 10.1016/j.asoc.2009.11.033
-
Wu C., Ken Y., Huang T., Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing Journal 2010 10 4 1164 1177 2-s2.0-78049274831 10.1016/j.asoc.2009.11.033
-
(2010)
Applied Soft Computing Journal
, vol.10
, Issue.4
, pp. 1164-1177
-
-
Wu, C.1
Ken, Y.2
Huang, T.3
-
28
-
-
38649135047
-
Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
-
2-s2.0-38649135047 10.1016/j.eswa.2007.06.029
-
Sugumaran V., Sabareesh G. R., Ramachandran K. I., Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine. Expert Systems with Applications 2008 34 4 3090 3098 2-s2.0-38649135047 10.1016/j.eswa.2007.06.029
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.4
, pp. 3090-3098
-
-
Sugumaran, V.1
Sabareesh, G.R.2
Ramachandran, K.I.3
-
29
-
-
70449627002
-
Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity
-
2-s2.0-70449627002 10.1016/j.ejmech.2009.09.006
-
Pourbasheer E., Riahi S., Ganjali M. R., Norouzi P., Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European Journal of Medicinal Chemistry 2009 44 12 5023 5028 2-s2.0-70449627002 10.1016/j.ejmech.2009.09.006
-
(2009)
European Journal of Medicinal Chemistry
, vol.44
, Issue.12
, pp. 5023-5028
-
-
Pourbasheer, E.1
Riahi, S.2
Ganjali, M.R.3
Norouzi, P.4
-
30
-
-
79953288891
-
Personalized mode transductive spanning SVM classification tree
-
2-s2.0-79953288891 10.1016/j.ins.2011.01.008
-
Pang S., Ban T., Kadobayashi Y., Kasabov N., Personalized mode transductive spanning SVM classification tree. Information Sciences 2011 181 11 2071 2085 2-s2.0-79953288891 10.1016/j.ins.2011.01.008
-
(2011)
Information Sciences
, vol.181
, Issue.11
, pp. 2071-2085
-
-
Pang, S.1
Ban, T.2
Kadobayashi, Y.3
Kasabov, N.4
-
31
-
-
84868623982
-
Streamflow forecasting by SVM with quantum behaved particle swarm optimization
-
Ch S., Anand N., Panigrahi B. K., Mathur S., Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 2013 101 18 23
-
(2013)
Neurocomputing
, vol.101
, pp. 18-23
-
-
Ch, S.1
Anand, N.2
Panigrahi, B.K.3
Mathur, S.4
-
32
-
-
77952669532
-
Kernel subclass convex hull sample selection method for SVM on face recognition
-
Zhou X., Jiang W., Tian Y., Shi Y., Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010 73 2234 2246
-
(2010)
Neurocomputing
, vol.73
, pp. 2234-2246
-
-
Zhou, X.1
Jiang, W.2
Tian, Y.3
Shi, Y.4
-
33
-
-
39449129104
-
Performance of KNN and SVM classifiers on full word Arabic articles
-
2-s2.0-39449129104 10.1016/j.aei.2007.12.001
-
Hmeidi I., Hawashin B., El-Qawasmeh E., Performance of KNN and SVM classifiers on full word Arabic articles. Advanced Engineering Informatics 2008 22 1 106 111 2-s2.0-39449129104 10.1016/j.aei.2007.12.001
-
(2008)
Advanced Engineering Informatics
, vol.22
, Issue.1
, pp. 106-111
-
-
Hmeidi, I.1
Hawashin, B.2
El-Qawasmeh, E.3
-
34
-
-
42549090647
-
Quantum-inspired evolutionary tuning of SVM parameters
-
10.1016/j.pnsc.2007.11.012 MR2427110
-
Luo Z., Wang P., Li Y., Zhang W., Tang W., Xiang M., Quantum-inspired evolutionary tuning of SVM parameters. Progress in Natural Science 2008 18 4 475 480 10.1016/j.pnsc.2007.11.012 MR2427110
-
(2008)
Progress in Natural Science
, vol.18
, Issue.4
, pp. 475-480
-
-
Luo, Z.1
Wang, P.2
Li, Y.3
Zhang, W.4
Tang, W.5
Xiang, M.6
-
35
-
-
84868623982
-
Streamflow forecasting by SVM with quantum behaved particle swarm optimization
-
Ch S., Anand N., Panigrahi B. K., Mathur S., Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 2013 101 18 23
-
(2013)
Neurocomputing
, vol.101
, pp. 18-23
-
-
Ch, S.1
Anand, N.2
Panigrahi, B.K.3
Mathur, S.4
-
36
-
-
0003684449
-
-
2nd New York, NY, USA Springer MR1851606
-
Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2001 2nd New York, NY, USA Springer MR1851606
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
|