메뉴 건너뛰기




Volumn 41, Issue 1, 2013, Pages 91-124

Convergence rate of Markov chain methods for genomic motif discovery

Author keywords

DNA; Gibbs sampler; Multimodal; Slow mixing; Spectral gap

Indexed keywords


EID: 84879246601     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1075     Document Type: Article
Times cited : (14)

References (45)
  • 2
    • 68649092316 scopus 로고    scopus 로고
    • On the computational complexity of MCMC-based estimators in large samples
    • MR2533478
    • BELLONI, A. and CHERNOZHUKOV, V. (2009). On the computational complexity of MCMC-based estimators in large samples. Ann. Statist. 37 2011-2055. MR2533478
    • (2009) Ann. Statist. , vol.37 , pp. 2011-2055
    • Belloni, A.1    Chernozhukov, V.2
  • 3
    • 0002269120 scopus 로고
    • Limiting behavior of posterior distributions when the model is incorrect
    • BERK, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect. Ann. Math. Statist. 37 51-58.
    • (1966) Ann. Math. Statist. , vol.37 , pp. 51-58
    • Berk, R.H.1
  • 7
    • 0000255332 scopus 로고
    • Comparison theorems for reversible Markov chains
    • MR1233621
    • DIACONIS, P. and SALOFF-COSTE, L. (1993). Comparison theorems for reversible Markov chains. Ann. Appl. Probab. 3 696-730. MR1233621
    • (1993) Ann. Appl. Probab. , vol.3 , pp. 696-730
    • Diaconis, P.1    Saloff-Coste, L.2
  • 8
    • 0030487036 scopus 로고    scopus 로고
    • Logarithmic Sobolev inequalities for finite Markov chains
    • MR1410112
    • DIACONIS, P. and SALOFF-COSTE, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695-750. MR1410112
    • (1996) Ann. Appl. Probab. , vol.6 , pp. 695-750
    • Diaconis, P.1    Saloff-Coste, L.2
  • 9
    • 0002740591 scopus 로고
    • Geometric bounds for eigenvalues of Markov chains
    • MR1097463
    • DIACONIS, P. and STROOCK, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 36-61. MR1097463
    • (1991) Ann. Appl. Probab. , vol.1 , pp. 36-61
    • Diaconis, P.1    Stroock, D.2
  • 10
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • GELMAN, A. and RUBIN, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457-472.
    • (1992) Statist. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern. Anal. Mach. Intell. 6 721-741.
    • (1984) IEEE Trans. Pattern. Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 13
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • (PeñíScola, 1991) (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford Univ. Press, New York. MR1380276
    • GEWEKE, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian Statistics, 4 (PeñíScola, 1991) (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 169-193. Oxford Univ. Press, New York. MR1380276
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 14
    • 0036970574 scopus 로고    scopus 로고
    • Hidden Markov models and disease mapping
    • MR1951259
    • GREEN, P. J. and RICHARDSON, S. (2002). Hidden Markov models and disease mapping. J. Amer. Statist. Assoc. 97 1055-1070. MR1951259
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 1055-1070
    • Green, P.J.1    Richardson, S.2
  • 15
    • 34250747348 scopus 로고    scopus 로고
    • Shotgun stochastic search for "large p" regression
    • MR2370849
    • HANS, C., DOBRA, A. andWEST, M. (2007). Shotgun stochastic search for "large p" regression. J. Amer. Statist. Assoc. 102 507-516. MR2370849
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 507-516
    • Hans, C.1    Dobra, A.2    West, M.3
  • 16
    • 0001562199 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis algorithms
    • MR1731030
    • JARNER, S. F. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. MR1731030
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 341-361
    • Jarner, S.F.1    Hansen, E.2
  • 17
    • 0346490298 scopus 로고    scopus 로고
    • Computational discovery of gene regulatory binding motifs: A Bayesian perspective
    • MR2082154
    • JENSEN, S. T., LIU, X. S., ZHOU, Q. and LIU, J. S. (2004). Computational discovery of gene regulatory binding motifs: A Bayesian perspective. Statist. Sci. 19 188-204. MR2082154
    • (2004) Statist. Sci. , vol.19 , pp. 188-204
    • Jensen, S.T.1    Liu, X.S.2    Zhou, Q.3    Liu, J.S.4
  • 18
    • 78649758959 scopus 로고    scopus 로고
    • Gibbs sampling for a Bayesian hierarchical general linear model
    • MR2645487
    • JOHNSON, A. A. and JONES, G. L. (2010). Gibbs sampling for a Bayesian hierarchical general linear model. Electron. J. Stat. 4 313-333. MR2645487
    • (2010) Electron. J. Stat. , vol.4 , pp. 313-333
    • Johnson, A.A.1    Jones, G.L.2
  • 19
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • MR1888447
    • JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334. MR1888447
    • (2001) Statist. Sci. , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 20
    • 24344493048 scopus 로고    scopus 로고
    • Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
    • MR2060178
    • JONES, G. L. and HOBERT, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 784-817. MR2060178
    • (2004) Ann. Statist. , vol.32 , pp. 784-817
    • Jones, G.L.1    Hobert, J.P.2
  • 22
    • 3142592324 scopus 로고    scopus 로고
    • Methods in comparative genomics: Genome correspondence, gene identification and regulatory motif discovery
    • KELLIS, M., PATTERSON, N., BIRREN, B., BERGER, B. and LANDER, E. S. (2004). Methods in comparative genomics: Genome correspondence, gene identification and regulatory motif discovery. J. Comput. Biol. 11 319-355.
    • (2004) J. Comput. Biol. , vol.11 , pp. 319-355
    • Kellis, M.1    Patterson, N.2    Birren, B.3    Berger, B.4    Lander, E.S.5
  • 24
    • 0027912333 scopus 로고
    • Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment
    • LAWRENCE, C. E., ALTSCHUL, S. F., BOGUSKI, M. S., LIU, J. S., NEUWALD, A. F. and WOOTTON, J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262 208-214.
    • (1993) Science , vol.262 , pp. 208-214
    • Lawrence, C.E.1    Altschul, S.F.2    Boguski, M.S.3    Liu, J.S.4    Neuwald, A.F.5    Wootton, J.C.6
  • 25
    • 0034403006 scopus 로고    scopus 로고
    • Evolutionary Monte Carlo: Applications to Cp model sampling and change point problem
    • LIANG, F. and WONG, W. H. (2000). Evolutionary Monte Carlo: Applications to Cp model sampling and change point problem. Statist. Sinica 10 317-342.
    • (2000) Statist. Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 26
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • MR1294740
    • LIU, J. S. (1994). The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J. Amer. Statist. Assoc. 89 958-966. MR1294740
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 27
    • 0035228215 scopus 로고    scopus 로고
    • Bio Prospector: Discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes
    • LIU, X.,BRUTLAG, D. L. and LIU, J. S. (2001). Bio Prospector: Discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pacific Symposium on Biocomputing 6 127-138.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 127-138
    • Liu, X.1    Brutlag, D.L.2    Liu, J.S.3
  • 28
    • 84950424966 scopus 로고
    • Bayesian models for multiple local sequence alignment and Gibbs sampling strategies
    • LIU, J. S., NEUWALD, A. F. and LAWRENCE, C. E. (1995). Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J. Amer. Statist. Assoc. 90 1156-1170.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1156-1170
    • Liu, J.S.1    Neuwald, A.F.2    Lawrence, C.E.3
  • 29
    • 0000854270 scopus 로고
    • Covariance structure and convergence rate of the Gibbs sampler with various scans
    • MR1325382
    • LIU, J. S.,WONG, W. H. and KONG, A. (1995). Covariance structure and convergence rate of the Gibbs sampler with various scans. J. Roy. Statist. Soc. Ser. B 57 157-169. MR1325382
    • (1995) J. Roy. Statist. Soc. Ser. , vol.B 57 , pp. 157-169
    • Liu, S.1    Wong, J.W.H.2    Kong, A.3
  • 30
    • 0036338627 scopus 로고    scopus 로고
    • Markov chain decomposition for convergence rate analysis
    • MR1910641
    • MADRAS, N. and RANDALL, D. (2002).Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12 581-606. MR1910641
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 581-606
    • Madras, N.1    Randall, D.2
  • 32
    • 0042193001 scopus 로고    scopus 로고
    • Ordering and improving the performance of Monte Carlo Markov chains
    • MR1888449
    • MIRA, A. (2001). Ordering and improving the performance of Monte Carlo Markov chains. Statist. Sci. 16 340-350. MR1888449
    • (2001) Statist. Sci. , vol.16 , pp. 340-350
    • Mira, A.1
  • 33
    • 33846880861 scopus 로고    scopus 로고
    • Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny
    • MR2288719
    • MOSSEL, E. and VIGODA, E. (2006). Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny. Ann. Appl. Probab. 16 2215-2234. MR2288719
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 2215-2234
    • Mossel, E.1    Vigoda, E.2
  • 34
    • 0029144601 scopus 로고
    • Gibbs motif sampling: Detection of bacterial outer membrane protein repeats
    • NEUWALD, A. F., LIU, J. S. and LAWRENCE, C. E. (1995). Gibbs motif sampling: Detection of bacterial outer membrane protein repeats. Protein Sci. 4 1618-1632.
    • (1995) Protein Sci , vol.4 , pp. 1618-1632
    • Neuwald, A.F.1    Liu, J.S.2    Lawrence, C.E.3
  • 35
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • MR0362823
    • PESKUN, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60 607-612. MR0362823
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 36
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • MR2095565
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20-71. MR2095565
    • (2004) Probab. Surv. , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 37
    • 0035609585 scopus 로고    scopus 로고
    • Approximate predetermined convergence properties of the Gibbs sampler
    • MR1939698
    • ROBERTS, G. O. and SAHU, S. K. (2001). Approximate predetermined convergence properties of the Gibbs sampler. J. Comput. Graph. Statist. 10 216-229. MR1939698
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 216-229
    • Roberts, G.O.1    Sahu, S.K.2
  • 38
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • MR1340509
    • ROSENTHAL, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566. MR1340509
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 39
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James-Stein estimators
    • ROSENTHAL, J. S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimators. Statist. Comput. 6 269-275.
    • (1996) Statist. Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 40
    • 0031787969 scopus 로고    scopus 로고
    • Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
    • ROTH, F. P., HUGHES, J. D., ESTEP, P. W. and CHURCH, G. M. (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16 939-945.
    • (1998) Nat. Biotechnol. , vol.16 , pp. 939-945
    • Roth, F.P.1    Hughes, J.D.2    Estep, P.W.3    Church, G.M.4
  • 41
    • 84971804758 scopus 로고
    • Improved bounds for mixing rates of Markov chains and multicommodity flow
    • MR1211324
    • SINCLAIR, A. (1992). Improved bounds for mixing rates of Markov chains and multicommodity flow. Combin. Probab. Comput. 1 351-370. MR1211324
    • (1992) Combin. Probab. Comput. , vol.1 , pp. 351-370
    • Sinclair, A.1
  • 42
    • 0032382065 scopus 로고    scopus 로고
    • A note on Metropolis-Hastings kernels for general state spaces
    • MR1620401
    • TIERNEY, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab. 8 1-9. MR1620401
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 1-9
    • Tierney, L.1
  • 44
    • 66149093135 scopus 로고    scopus 로고
    • Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions
    • MR2521882
    • WOODARD, D. B., SCHMIDLER, S. C. and HUBER, M. (2009a). Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. Ann. Appl. Probab. 19 617-640. MR2521882
    • (2009) Ann. Appl. Probab. , vol.19 , pp. 617-640
    • Woodard, D.B.1    Schmidler, S.C.2    Huber, M.3
  • 45
    • 65749095586 scopus 로고    scopus 로고
    • Sufficient conditions for torpid mixing of parallel and simulated tempering
    • MR2495560
    • WOODARD, D. B., SCHMIDLER, S. C. and HUBER, M. (2009b). Sufficient conditions for torpid mixing of parallel and simulated tempering. Electron. J. Probab. 14 780-804. MR2495560
    • (2009) Electron. J. Probab. , vol.14 , pp. 780-804
    • Woodard, D.B.1    Schmidler, S.C.2    Huber, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.